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1. INTRODUCTION

A topic of increasing importance in public-sector management is the design and implementation
of financial incentive systems that will encourage lower-level government units and profit-making
organizations under contract to these units to use government funds efficiently and <atisfy nonfinancial
government objectives. One such incentive system is the Design-to-Cost (DTC) system, implemented
for many major weapons acquisition projects in the Department of Defense [5], [14] in which a DTC
goal is established for each project. Any deviations from the goal are corrected by changing the perfor-
mance of the weapons system or by changing the number of weapons produced, or both. This paper
constructs a simple model of the information, incentive and decision aspects of such an incentive sys-
tem and offers insights into the tradeoffs and policy issues involved.

There is substantial literature on the theory of contracts [15], [8] and the design of incentives [2],
[6]. 7], [10], I9]. However, an examination of this literature discloses the need for research in two
areas that are essential to an understanding of the weapons acquisition process. The first need arises
whenever a development effort precedes a production effort. The dynamic incentive process—that is, a
multistage process in which contractor behavior during any one stage is affected, by the incentives
aperative during that stage, and by an expectation of rewards or punishments in the subsequent
stages—is not addressed by the literature. The second need arises due to lack of consideration of any
but the most simple of hierarchies. Yet in any large government/contractor effort, the government is
represented by at least three distinct organizations (the Congress, the Administration, and the Bureau-
cracy), and the contracting agent may be represented by several organizations as well (e.g., contractors
and subcontractors). This paper addresses both the dynamic and hierarchical aspects of contracting in

the DTC context (see [12], [1]).

The weapons acquisition process is viewed here as a multistage process whose characteristics
change substantially over time. The acquisition process consists of (at least) three steps: (1) a
development stage in which two or more contractors receive funds to design and test a prototype
weapon, at the end of which a single contractor is awarded a production contract; (2) a production stage
in which the winning contractor produces one or more copies of the weapon; and (3) an implementa-
tion and maintenance stage in which the weapon is maintained and modified in the field, often with
some contractor support. The principal interactions occur between the first two stages (i.e., contractors
behave differently during the development stage as the award of the production contract is uncertain).
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2 R. W. BLANNING, P. R. KLEINDORFER AND (. S. SANKAR

Hence, we will confine our analysis to the first two stages. We assume that the contract during
development stage is a fixed-price contract and the contract during production stage is an incentive con-
tract including (1) full cost recovery, (2) a reward or penalty depending on the cost of production
relative to a negotiated cost target, and (3) a reward or penalty depending on weapon performance rela-
tive to a prespecified performance target.

The hierarchical nature of the DTC system is also emphasized in our research. We examine four
levels of government and contractor hierarchy. At the highest level, representing the Congress and the
Administration. DTC goals and allowable probabilities of exceeding these goals are established.
{Weapon cost and performance are assumed to be random variables whose mean values are controll-
able.) A1 the second level, representing DoD and the appropriate military service, the DTC goal is par-
titioned into two subgoals, one for the development stage and one for the production stage, and the
contractors participating in the development stage are selected. At the third level, representing the mil-
jtary service and its project managers, most of the parameters in the incentive system are established
and the production contract is awarded. (In our analysis, we assume that the decisions at this level are
established by decision rules known in advance to both the government and the contractors.) Al the
fourth level, representing the contractors, contract parameters are negotiated and the levels of contrac-
tor effort (number of personnel, cost of raw material, etc.) are chosen for the two stages.

In the following section a model of the DTC incentive system is developed. The model is solved
to determine the impact of government decisions (contractual incentive parameters, the allocation of
the DTC goul between development and production stages, and the level of risk acceptable to the
government) and the technological and market environment of the project on outcomes such as the
quality of the weapon produced, the cost to the government, the profit of the firms in the industry, the
risks assumed by the government and the risks assumed by the firms. Some of the policy implications
of the model are then illustrated by a series of examples.

2. THE BASIC MODEL

We consider a given project and assume that Congress has established a Design-to-Cost (DTC)
goal, G for the project. G is understood to be a constraint on total project cost and it is assumed that G
may be exceeded only with ex ante probability y. One might anticipate that DoD would set y strategi-
cally to trade off the transactions costs of exceeding budgets and exposing itself to (re) appropriations
hearings against the internal transactions costs which occur if y is small.

We assume that » firms have been preselected as candidates for carrying out the project, in two
stages. In the development stage, the n firms compete against one another in producing the best
design. In the second stage, the firm with the best first-stage design is awarded (the opportunity to bid
on) a production contract. To state the problem precisely we need the following notation.

e, = Effort expended by firm /in stage s. In the development stage, s = d, and in the
production stage, s = p,

Q\l ( (.\I )

Quality (or performance level) achieved by firm Jin stage s;*

C,le,) = Costs incurred by firm /in stage s as a function of effort expended.

*We assume that a single measure of quality describes adequatefy the performance of the system and that this measure is additive
across the development and production stages (i.e., that development quality plus the qualuy added during the production stage
equals total quality) In practice the measure is multidimensional. and many of the dimensions appropriate to the development
stage are not the same as those appropriate to the production stage. The former emphasize mission requirements, proper exploi-
tation of new technology, etc. The latter emphasize quaiity cuntrol, delivery schedules, etc. We assume that the government and
the contractor can agree on a procedure (e.g.. the calculation of a weighted sum of the various dimensions of quality) that will
result in 4 single additive measure.

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 29. NO. 1. MARCH 1982




DESIGN-TO-COST MULTISTAGE CONTRACTUAL INCENTIVES 3

DoD is assumed to consider the following types of contract. All development contracts are firm
fixed price contracts with each of the n firms involved receiving G,/ n dollars.* G; < G is therefore the
total development cost to the government. The production contract, if awarded to firm i, is assumed to
be a general incentive contract with payments above costs to firm i specified as:

(]) ﬂﬂi (Tp,, E’p,, Q{I) =a TPi +b [Tp, - Cpi(epi)] + R,(Qd + Qp"(epi))r

where random quantities have a ~ over them, and where

;i T, = Target cost rate, negotiated by firm / at the beginning of the production stage; T, is
. assumed constrained to be nonnegative (negative bids are not allowed);

O, = Cumulative progress in quality of the project during the development stage, which is
I the starting point for the production stage;

a.b = Contract incentive parameters, wherea =2 0, 0 < b < 1,
> R(g) = Performance incentive payment, for firm i, expressed as a function of total quality

achieved over both stages.

E At the end of the development stage, DoD would have spent exactly G, dollars, leaving
h G, = G — Gy dollars in the overall project budget. Suppose firm i achieves the best performance in the
development stage, i.e., suppose

(2) Oules) = Q4= lﬁ'fﬂxn Oy (eq).

We assume that if (2) obtains, then firm i is given the exclusive right to bid on a production contract.
In a realistic setting, one might assume that more than one of the leading firms at the end of the
development stage is given the opportunity to bid on a production contract. This possibility is excluded
here. Thus, it is assumed that the leading development firm, say i, is interested at the beginning of the
production stage in setting 7,, e,, a, and b so as to maximize its profits in development stage

U, (T,. e, Q) where

(3 U(T,, e, Q) =
Elﬁp, (T, en. Q) + Fl(Odi(edi)- Qpi(epi))lédi(edi) = Q4.

where F,(g,.q,) represents expected follow-on benefits to firm i_(e.g., in terms of maintenance con-
f tracts, future benefits from the technology developed, etc)t I, is given in (1), and I, + C,
represents total (incentive plus cost) payments made by the government in the production stage.

*In general one would expect some sort of cost reimbursement to take place during the development stage. However. we as-
sume a fixed price contract to contrast firm behavior in this stage with firm response to government-established incentives in the
production stage. In Sections S and 6 we examine the implications of this assumption—primarily, that some firms may decline to
participate in the development process. This may occur even under cost reimbursement if some firms find that their expected
profits. although nonnegative, are less than the profits that would result from alternative earnings opportunities.

*1t was mentioned in the introduction that the acquisition process consists not only of a development and a production stage. but
also an ongoing stage of operation and maintenance, including retrofitting and occasionally major modification. We do not expli-
citly consider this third stage, so that we may focus more closely on the relationship between development and production.
Thus, we are concerned here w h acquisition costs and not with life cycle costs. However, some of this may be captured in the
quality measure and the follow-on benefits. That is, the firm that produces a reliable and maintainable system is likely to develop
4 reputation that will lead to significant follow-on benefits. The impact of these follow-on benefits is first explained on page 4 and
1s discussed 1n more detail later in the manuscript. (See also footnote on page 7.)

VOL. 29. NO. |, MARCH 1982 NAVAL RESEARCH LOGISTICS QUARTERLY
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Of course, firm i will be subject to some constraints in indulging with its preferences as
represented by (3). Indeed, we assume that "a" is fixed in advance by the government and the follow-
ing holds for variables (7,,e,,b):

@) Prifl,(T,.e,.0.) + C,le,) = G,) < v,

where vy is specified by the Congress and the Administration. The fact that firms accept (4) as a con-
straint, of course, presumes that in the case of costs overruns, acceptable auditing practices can expose
and penalize firms which cannot make a credible ex post case that (4) was observed in their planning.
This dependence of contractual incentives on (legitimate) enforcement and monitoring procedures can-
not be overemphasized.

Beyond fixing "4" and imposing (4), we will assume that production contracts are negotiated
through one of two methodst (firm i is the leading development firm):

Method 1, M1: "#" is fixed ex ante and any T,.¢, satisfying (4) will be accepted by DoD.

Method 2, M2: Firm i/ and DoD negotiate (T,.e,.b) at the beginning of the production stage
such that (4) is satisfied and such that a Pareto efficient point is reached between firm 7 and DoD. The
preferences of firm i are represented by (3). DoD is assumed to have preferences represented by a
utility function Up(C,CO,Q), where Q = O, + 0,,(¢,) is final project quality, ¢ = G, + I, + C,, is
total project cost, and CO = C — G is the cost overrun.

Formally, we may represent the two production stage decision processes just described as follows:

(5) M1: Maximize (3) with respect to (7,.¢,), subject to (4).
(5" M2: Maximize laU,(T,.c,.0,) +
Tp,.ep,.

(1-a) E{Up(Gy + M1, + G, Gy + M1, + G, — G Oy + On (e, N]]
subjectto (4), 7, 2 0, ¢, 2 0and 0 < b < I,

where « is between 0 and 1 and reflects the relative bargaining power of the contractor against DoD,
U, is defined in (3), 1, is given in (1), C,, = C,(¢,) is the cost for the production stage, and Q, is
the observed realization of (2). We will define the optimal solution value to (5) or (5} as },(Q,): this
is the optimal expected return for firm /if the ending quality level in (2) is @, and firm /is awa ded the

production contract.

Now consider the development stage. Each of the » firms involved may be assumed to maximize
the sum* of present benefits and expected follow-on benefits (V,(Q,) if firm i is allowed to bid on the
production contract). Expected follow-on benefits may then be wriiten:

0 if Q{Il(v(h) < Od

(6) Expected follow-on benefits = V,n((.)(/) it 0, (c,) = O,

*Method | was analyzed by McCall [11] for a static problem and neglecting (4). He showed the possibility of a buas in fiavor of
inefficient firms arising from opportunity cost considerations. Such effects are targely ignored here, though briefly considered in
the spirit of Canes [3] and Cummins {4]. who also did not consider any constraints similar to (4)

tWe ignore dis.ounting here for notational convenience.

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 2 NO. 1. MARCH 1982
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From (6) we see that an expected profit-maximizing contractor would solve the following problem
in determining his level of effort ¢, in the development stage:

) Max E{(Gd/") b édi(edi) + V,,,'(Qdi((”d,))ji(?d/, RN ed,,)}. j
€di
where C.'di(gdi) is the cost incurred in stage d for firm i and where A;(e;. ..., e;) equal to 1 if

Quiles) = Oy = Max (de(edj)} and 0 otherwise. Note that the probability that firm i is allowed to bid

J -
on the production contract (i.e., Pr {4; = 1}) depends on the level of effort of all the » firms involved.
Denote the optimal solution value in (7) by V;(e;,G;,n), where e; = (¢4, ..., ez).

The final step is the determination of e,. This problem may be fcrmulated as a noncooperative
game, with utility functions V;(e;,G,;,n). We are interested in a Nash solution &, = &,(G,,n) to this
game, i.e., a joint strategy &, satisfying

(8) V,,,-(éd,Gd.n) = Max {Vdi(édlv e é.’di—lvedi' édi-Hv ety édn”edi > 0},
foreveryi € {1, ..., n}.*

Assuming &,(G,.n) is unique (see below) for each G, and n, the random variables C, CO, and @
are determined by G, and » through é,. DoD is then interested in determining G, (and possibly also

n) so that its expected utility E£{U,(C,C0,0)} is maximized. If firm i is awarded the production con-
tract, then

9) C=COST =G, + (I, + ()
10) CO = COST OVERRUN = C - G,
(1) 0 = QUALITY = @, + 0,..

Thus, DoD wishes to set G, (and possibly n) so as to
n - - -~ - -~ - -
(12) Ogl\ggéc’g E{Up(Gy+ 11, + C,. (Gg+ 11, + C,, = G), Oy + Q)+ Prid, =1},
where all quantities are evaluated at &,(G,,n), e.g.,
ﬁp,- = ﬁpi (Tpi(le(édl))v é,,,(éd,-(éd,)). Qd,(f’d,)),

where ?,,,-(Qd),é,,,«(Qd) are the optimal solution to (5)-(5') for given Q,. Major problems occur in solv-
ing (5)-(5') and in obtaining é,(G,,n), to which we now turn.

3. SOLUTION-METHOD 1

In order to obtain analytical results, it is necessary to make assumptions about the forms of the
probability distributions and reward functions. Specifically, we assume for each i =1, ..., » that:

1. C,le,) is random quantity with expected value eZ.

2. Qu(es) is exponentially distributed, independently of {Q,,(e,)]j = i} with expected value
qa€qi, Where g4 > 0.

*This is a Nash equilibrium. not a dominant strategy equilibrium. In other words. if all but one of the players should adopt the
equilibrium strategy and the one player should depart, his profits will be reduced. However. if two or more players should col-
lude (by departing from the Nash equilibrium and sharing their profits), they might each be able to realize higher profits. This
dehavior, which would atmost certainly constitute conspiracy to defraud the government. is not considered in our model. In ad-
dition, we assume that each competitor for the production contract is aware of the technological capabilities and the values (e.g..
for follow-on benefits) of the other competitors
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3. C,(e,) and Q,(e,) are jointly normal with respective means e} and q,;e,(g, > 0), respective

variances o 2 and n}, and with positive correlation coefficient 8 ;.

4. R,(Q) =0, i.e., performance incentive payments are nil.
5. F(Q..Q,) = H, + h;Qy + h,Q,, where H, h, 2 0, h, 2 0 are constants.

For this data we may write (5) as
(13) Max [(a+6)T, — bel + H + hy Qs + hyqye,]
I’l'eﬂ'
subject to:
(14) Prita+6)T, — b Cyle,) + Cule,) = G, < .
Collecting terms, (14) may be rewritten as:
(15) Pril1-5) C,(e,)]l 2 [G, ~ (a+b) T,1) < .

Since C,, is normal, (1-6)C,, is also normal with mean (1—b)e} and variance (1—b)%0 2 so (15)
may be expressed as

(16) [(1=b)e2 + (a+ )T, — G,] + (1= )oK (y) < 0
where K (y) is the (I — y)™ fractile of the unit normal, i.e., Pr(N(0,1) > K ()} = y.

Define k,,(y.b) through

(17) kpu(y.0) = K(x)(~8)a,.
Then (16) becomes
(18) [A=b)e} + (a+b) T, — G,] < — ky(y.b).

Thus, the constraint (14) may be written as (18). Since b £ 1, we see that (18) defines a convex
region for every value of Q,. Note also that dk,/dy < 0 and 9k,/8b < 0. Thus, as y or b decreases
the constraint region becomes larger. Similarly, as Q, decreases the constraint region becomes larger.

To find the optimal 7T, e, in (13), note that whatever e, is, the optimal 7, will be set so that
(18) holds as an equality since otherwise firm /could simply increase T, with consequent higher profits.
Solving for (a + 5) T, in (18), we see therefore that, at the optimum,

(19) (@a+ )T, = G, — ky(y.b) = (1-b)el.
Thus, substituting in (13) for (a + b) T, the following problem characterizes the optimal ¢,.
(20) Max [—e? — k, (y.b) + G, + H, + h; Qs + hyqpe,],

subject to e, > 0 and T, 2 0. Using (19), the nonnegativity constraint on 7, may be expressed in
terms of e, as

21 (1-b)el < G, — ky(y.5).

Thus, the problem of interest is to maximize (20) subject to ¢, 2> 0 and (21). This simple quadratic
programming problem has the solution

1
2

[Gp ~ k., (y.6)

. M P
22 é, = Min [ . 5

2

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 29, NO. 1, MARCH 1982




DESIGN-TO-COST MULTISTAGE CONTRACTUAL INCENTIVES 7

and the optimal target cost 7, is therefore determined by (19) as
. G,= (1=b)é}— k,(y.b)

23) T,=—* e

( p (a+b)

Finally, the optimal value of the objective function in (20) (respectively in (13)) is obtained by substi-
tuting &, for e, in (20). This yields

(24) V,i(Qg) = Ky + hy Q4.
where K, is independent of (, and is given explicitly by
(25) Kp,' = Gp - k,,l'(‘y,b) + H, e ?’72, + hﬁlqplé/ll‘

Notice from (22) that firm i will expend only the minimum effort (here &, = 0) in stage P under
Method 1 contracting unless there is some promise of follow-on rewards from such effort (i.e., unless
hy > 0).*

From (7) and (24) we see that firm i solves the following problem in determining its level of
development effort ey;:

(26) LM% E((Gyn) — e} + K, + hai Qu(e) 1A, (e, 0,m)),
diZ
where e;=(ey, ..., €4y, €44y, ..., €4). We have used the assumption in (26) that

E[C’d,(ed,)}_= e and also the fact A;(e,,n) = 1 precisely when firm i achieves the maximum in (2);
otherwise 4,(e;,n) = 0.

We first evaluate the following expression in (26):
(27) EP = E{ [Kp[ + hdedi(edi)]’Zl(edl'ftll'”)}'

EP represents the expected returns from the production stage as seen by firm i at the beginning of stage
d

We first note from (2) that

(28) Pr{d,(esn) =1} =Pr{Q,(e;) < Quley)| foralij=1, ..., n},
or using the assumed independence of {Q; 1/ = 1. ..., ]
(29) Prid,(e,n) = 1} = ] Pr{Qy(es) < Oule)).

j=1

Thus, if F,(qg.e;) = Pr(Q(,,(e,i,) < ¢} is the cumulative distribution function of Q,j(ed,). we may write
(29) as '

(30) Pr{d,(e,n) = 1} = TT Fiy(Qules).eq).

JE

*This striking result can be explained quite simply. If a firm is not concerned with follow-on benefits and is not directly rewarded
for quality performance, it has no incentive to expend more than the minimum required effort during the production stage. This
behavior cannot be altered by changing the method of competition for the production contract, but rather by (1) incorporating
minimum acceptable levels of effort or quality into the production contract, (2) rewarding the firm directly for deliverying a quali-
ty system. and/or (3) encouraging the firm to belicve that there are follow-on benefits of producing a quality system. See also
the articie by General Tashjian {16], who argues that in a two-stage (development and production) contract the government
might motivate contractors to meet quality standards and the design-to-cost geal if it states in the development contract its inten-
tion to cancel the program if the design-to-cost goal is not met. As we point out in Section 6, determining the perceptions of
contractors concerning future government actions (and hence. their follow-on benefits) is an important topic for future research.

VOL. 29, NO. |, MARCH 1982 NAVAL RESEARCH LOGISTICS QUARTERLY
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Finally, using (30), (27) becomes
G EP = [ (K, + hyx] T Falveg)) fy(xe)dx,

1%

where £, (x.e,) is the probability density function of Q, (e,).

In the exponential case considered here, (31) becomes

(32) EP = L fow [[K,,, + XTI - exp[— X l” exp

4.4 Cui IE Yuai€y

dx.

44€u

Restricting attention to n = | or 2, we obtain

1 o X
=1]) = h, o —_—— = K. +
(33) EP(” ) 4un f() [K,,, + ’4/[\‘] expl oy dx I\/u h(]lq(ll()ﬂl'
and setting / & |
I bl X X
(34) EP(n=2) = f (K, + hux] |1 —exp|]l — exp|— dx
G4 €4 0 q.4,€4 94 €

Gai €
Guj€q; t GuiCai

= [Km + hd:(Idl"d:]

Comparing (33) and (34). it is interesting to note that for any given level of effort during the develop-
ment stage the ex ante expected returns from the production stage, which we denoted EP above, are

less for firm i if 2 firms compete for the production contract than if firm 7 alone is guaranteed the pro-
duction contract.

Now, given (33)-(34), we may easily solve (26) for the optimal development effort é,,, assuming
the other firm's effort fixed at ¢,,.

When n = 1, of course, there is no other competing firm and substituting (33) in (26) yields the
following as the appropriate problem for firm i (if firm i is the only development firm):

(35) Max [Gd - ezlzl + Kpi + hdiqmedl]'

"11120 i‘
which has the unique solution
4
- h i 't -
(36) b, = s
’ |
yielding overall profits for firm i of !
: hidi
(37) Vm((’d,.G‘]) = (l‘/ + K,,, + T‘

When n = 2, matters are more complicated. Substitution of (34) in (26) yields

G4 €
44,0a; + quCy

Taking first-order conditions in (38), while assuming ¢,, fixed, we obtain

Ee e et

(38) Max [[(G,/2) — e} + [K,, + hydge,]

"4120

KI it M €
(39) 0y = g oadu s
2% = hyq4(A + q44)]

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 29. NO. 1, MARCH 1982




DESIGN-TO-COST MULTISTAGE CONTRACTUAL INCENTIVES 9

where

(40) A=qpeqn t 4

We seek a Nash solution, defined by (8), which would be a simultaneous solution 1o (39) and th
corresponding equation for firm j, i.e., to (39) and

Kp/ qd/ 91 €
[ZAz - hd/qj’,(A + qxll()(ll)]

41 ey =

Assuming A fixed, and A, h, > 0, the simultaneous solution to (39} and (41) is /
A . !

“2) & (8) = (AQA — hyq)) hy,quqd + hd,K,,,qL,",q‘,”,]

“W KNG /7(1/‘/112/)/7111%;1(/;1/ + hy Kpadqi) .

where

(44) A=K, K, q3q} — QA — h;q2) QA = hyq3)A%.

Now, from (40) the Nash solution &, = ¢,(A) we seek must clearly satisfy (42)-(43) and /

(45) dareaA) + gnénd) = A, o ’
Thus, multipiying (42) (respectively, (43)) by ¢, (respectively, g, and adding the results leads o'

(45), which in general is a polynomial of degree 6 in the variable A. Numerical solution procedures
easily yield A in general, and once A is obtained so also is the desired Nash point é; from (41)-(42),
from which all other desired information may be obtained. In this paper we will not proceed further
with the general case. However, we discuss two cases which may be solved analytically.

CASFE 1. h, = 0 forall i In this case (39)-(41) can be solved directly to yield
(46) én = K, é,=NL/K,
where

40190 (K K )"
- V2K + 4K

In this case it can be shown that 9é,/dq, has the same sign and §é,/3K,, has the opposite sign of
(44, K, — 94~/ K,). As expected 88,/0K, > 0 always holds.

(47) T

CASE 2: Two identical firms. When g, = 94 = g4, hy = hy = hg, and K, = K, = K, we can
again solve (39)-(41) explicitly, obtaining

3/’(1(/:/ + V 9/1(12q¢l2 + 32K[1
16 ’
Here all the relative change effects are obvious and in the expected (positive) direction. An interesting

point to note from (48) (or (46)-(47)) is that when 4, = 0, the amount of effort expended in develop-
ment is independent of quality.

(48) (‘;t“ = (‘;,12 =

This concludes our discussion of Method 1 contracting (see (5)}). Before considering further the
government’s problem in this regard, let us turn our attention briefly to Method 2 contracting (see
(5')).
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4. SOLUTION—METHOD 2

We continue to make the cost and distributional assumptions 1-5 of the previous section. In
Method 2 contracting the stage p behavior of the production contracting firm, say /. is determined as a
solution to (5'), except that we further restrict 6 so that b 2 & 2 0, with b being some minimal shar-
ing rate set by Congress.* We assume the DoD utility function is specified linearly as

(49) Up(C.CO.0) = -, C = g, CO + g0,
where g, > 0.7 =1,2,3. Then, for given a € (0,1), we may write the problem (5') as follows:
(50) Maximize £V = o £ (M, + £} + (0 —a) E{UHC. CO.OINQ, = 0,
T
=alla + 67T, — bel

+ (fll + hded + /’prq/ue/u”

+ (1 - a) [—2(G, + E(T, + C,(e,)])

i
- &G, + El, + C,(e,)) = G)
+ 83004 + gye)1.
Subject to: (4) and b < b < 1.
Note that the expected total project cost (1o the government) and quality (given Q,) are. respectively.

G, + E{fln, + 2,(e,)} and Q,; + E{Q,(¢,)} = O, + 4pmen. NOw we note that
(51) EMl, + C,le,)) = (a + )T, + (1 = b)el.

Now, under our assumptions, (4) may be rewritten in the form (18). Moreover, as in Section 3.
it may be shown here that for any fixed b € [b, 1] the solution to (50) is on the boundary of the con-
straint set (18) provided only thatt

g+ &

(52) —_
1+g,+g,

Condition (52) may be viewed as a lower bound on the bargaining power of firm i We henceforth
assume (52) so that (4) (i.e., (18)) holds as an equality. Just as in Section 3, we can now substitute
(19) in (50) to obtain the final problem of interest:

(53)  Maximize (—ael + lah, + (1 —adgly,e, + Q;lah, + U~a)g) + TV(b)).

41,".(',”

Subjectto: T, 2 0.¢, 20, b < b <1,
n 14 =

where the term TVis independent of ¢, and Q, and is given by
(54} TV(b)=aH - (1—alg,G,

+ e - 1-a)g|]G,

+ [0 —a) (g + g)) — alk,(y.b).

*See also Canes {3], for a similar assumption and a discussion of some rationale for establishing such a lower bounding sharing
rate.

*When (52) does not hold. the solution to (S1) appears to be somewhat complicated as the solution need no longer be on the
boundary of (18). Details for this more general case have not vet been worked out.
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We may first note that (52) implies {a ~ (1 —ad (g, + gz_)] > 0, and this coupled with (see (17))
dk,/36 < 0 implies that the optimal solution for hin (53) is b = b (note that the only term containing
bis la — (1-a)l(g + g))] k,(y.b). To obtain e, we take first-order conditions in (53) and find

) N lan, + a-wrgilg, l G, ~ k(y.b)

12
(55) é, = Min . b |
and 7, is again found by substituting &, and b = binto (19) 10 obtain

. (G, — k,(y.5) — (1= b)§}]

Substituting b = b and e, in (§5) into (53), we see that Method 2 leads to exactly the same form
of solution value (see 24) as Method | (where the "denotes Method 2 values):

(57) VoalQ) =K, + h3,0,.
where for Method 2

(58) K, = —a[‘,,z, + [ah,,,q,,, + (0 =algg,le, + TV (h)
and
(59) hy = lah, + (1 ~adg;).

From this we see that the solution procedure and results for Method 1 in stage  are completely
transferabie to Method 2, with K, and A, substituted everywhere for A, and 4,

Before closing our analysis of Method 2 it is of interest 10 note. comparing (22) and (55), that
effort expended in the production stage is always greater under Method 2 than under Method | con-
tracting. More detailed comparative analysis of the other parameters and decisions will be explored in
the next section via numerical analysis.

5. ILLUSTRATIVE RESULTS

We illustrate the concepts and results of the previous sections with a numerical example, solved
in APL on the DEC System 10 at The Wharton School. We analyze the impact of the following param-
eters on the behavior of the firm and on the outcome of the project: variations in the risk shanng
parameter (b) and partitioning of the (fixed) total government budget between the production budget
(G,} and the development budget. We consider three industry configurations: two identical firms. two
firms with different levels of productivity, and a single monopolistic firm. The values of the parameters
used in these experiments are given in Table |. One can interpret these figures by assuming that
money is measured in dollars and that quality is measured in miles of range of the weapon (e.g.. an air-
craft or missile). Simulations are run for Method 1 and for Method 2 with « = 8 and a = 9. A sam-
ple of the output for the two identical firms with Method | appears in Table 2. The remaining analyses
are based on similar outputs for the other cases.

The impacts of the negotiation process (b} and budget allocated to production (G,) on costs, qual-
ity, and the mean and variance of profit are shown in Table 3. These relationships are identical across
all three industry structures. The mean and variance of cost to the government is the same for Mcthod
1 and Method 2, whatever the value of a. However, the expected quality and the e«pected cost to the
firms are higher for Method 2 than for Method 1, and within Method 2 they are higher when « is at its
lower value. In addition, as the expected cost of the firm increases from method 1 to Method 2. the
expected profit (including intangibles}) decreases. These effects accur, because Method 2 gives the

VOL. 29, NO. [, MARCH 1982 NAVAL RESEARCH LOGISTICS QUARTERLY
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TABLE | — Parameters in Experiment

Firm Parameters
Separate Firms Two Identical Firms
Parameters | Firm 1 | Firm 2 and One Firm
ap 1.6 1.5 1.55
hy, 12,000 | 10,000 11,000
hy 1200 1000 1100
[77] 8 .6 v
o 107 107 107
) 1500 1500 1500
b 7 7 7
“ —-10° —-10¢ —-108
Government Parameters
G=12%x10% g, =g =Lg;=10%y=15a="_1

TABLE 2 — Simulation Quiputs for Method | with Two Identical Firms

Standard
Value | Development | Production Total Cost to Deviation Production
of b Quality Quality Quality Government of Cost to Target
Government
1 4242 11.627 15.869 110.64 9.00 0
3 4.295 13.214 17.509 112.72 7.00 4.6177
5 4.329 13.214 17.543 114.80 5.00 30770
7 4.363 13.214 17.577 116.88 3.00 4.3847
9 4.397 13.214 17.611 118.96 1.00 5.1692
Standard
Value Cost to Profit of Deviation Intangible Development | Production
of b Firms Firms of Profit Profits Effort Effort
of Firms
R 88.92 151.73 16.1 130.01 4.0404 7.5011
3 106.14 154.08 14.9 147.50 4.0903 8.5250
5 106.68 155.65 13.8 147.53 41231 8.5250
7 107.21 157.22 13.0 147.55 4.1556 8.5250
.9 107.75 158.78 12.5 147.58 41879 8.5250
Cost and profit are measured in millions of dollars, quality is measured in thousands of
units, and effort is measured in thousands of units. G, = $6 x 10" and y = 15%.

NAVAL RESEARCH LOGISTICS QUARTERLY

VOL. 29, NO. 1, MARCH 1982

LA

o




DESIGN-TO-COST MULTISTAGE CONTRACTUAL INCENTIVES 13

TABLE 3 — Comparison of Methods for Amy Industrv Structure

B Valid for any value of hand G,
[ Variable Method 1 Method 2
a=.9 a=.8

Expected Cost to Same Same Same
the Government
Expected Total Quality Low Medium High
Expcglcd Cost o Low Medium High
the Firm
g"f‘t’sg‘;‘i’r :1 rofits High Medium | Low
Intangible Reward Low Medium High
Variance of Profit* High Medium Low
Variance of Cost to Same Same Same
the Government

*For the monopolistic industry structure, this variable i1s constant.

government more bargainning power than Method 1, and this bargainning power increases with
decreasing a. Thus, we obtain highest expected cost of firm and lowest expected profit at « = 0.8.

The impact of the risk sharing parameter (b) and the portion of the budget aliocated to production
{(,) on these variables are shown in Table 4. With regard to the risk sharing parameter, the results are
what one would expect, with one exception. As b increases, for any industry structure, the develop-
ment and production efforts of each firm increases as long as the production target of the firm is zero.
The production effort remains constant, with increasing b, once the target becomes positive. That is. as
b decrcases. cach firm attempts to respond by decreasing its target without changing its production
effort. But as the target is constrained to be nonnegative, the firm meets the design-to-cost goal by
decreasing its production effort. We also observe that when industry structure is monopolistic, develop-
ment effort is independent of A This occurs because the monopoly firm, assured of the contract, puts
forth minimal cffort at development stage to obtain intangible follow-on benefits. As a result, quality
of the weapon. cost to the government, cost to the firm, profit of the firm (including intangible
rewards). intangible rewards, and target increase (weakly) with increase in b. In addition, the variance
of the government cost decreases with increasing b, since the firm assumes more risk. However, the
variance of the firm’s profit also decreases as the firm assumes increasing risk and this is an interesting
result,

The explanation of this counterintuitive result arises partly from the fact that production cost and
quality are correlated (which introduces a negative term in the variance calculation whose derivative
mayv be dominant) and partly from the assumptions and parameter values used in these experiments.
We hegin by noting that the variance of profit (including intangibles) for the firm is given by

Var (I1,) = blr,, = 2bh,a,m, 8 + hink + highed + Var(Cy)

and thus,

d Var (11, 2herd L, de,  dVar(Cy)

A—-T = h(r/,, - Zhl,,(r,,,nl,,ﬁ - 2/,‘1'%'("/'—(/[)— + T

The variance of profit to the firm will increase or decrease with b as the above result is positive or nega-
tive. For the parameter values used in these experiments, the result will always be negative as long as
m . the coefficient of variation of C,,. is below .7 and will always be positive for @ > 2. For intermedi-
ate values, the variance of l]/ will decrease for low values of b and will thereafter increase.

VOL 29 NO 1 MARCH 1982 NAVAL RESEARCH LOGISTICS QUARTERLY
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TABLE 4 — Impact of b, G,, and Industry Structure on Variables
3 Effects on variables as b and G, change
p As b Increases As G, Increases
3 Variable Different | Identical One Different | Identical One
| Firms Firms Firm Firms Firms Firm i
Expected Total INC INC LIM INC INC LIM {
Quality j
Expected Cost to INC INC INC SAME | SAME | SAME i
the Government |
1
Expected Cost to INC INC LIM INC INC INC :
the Firms
Expected Profit INC INC INC CHG CHG LIM*
of the Firms
Expecied Intangible CHG INC LIM CHG INC LIM
Rewards
Production Target INC INC INC INC INC INC
Expected Quality INC INC SAME | INC INC SAME
at Development
Expected Quality at CHG LIM LIM CHG LIM LIM
Production
Variance of Cost DEC DEC | DEC SAME | SAME | SAME
to the Government
Variance of Profit
of the Firm DEC DEC DEC INC INC SAME
*This applies only to Method 1. For Method 2, the profit increases and then decreases.
LEGEND:
INC: increases
DEC. decreases
SAME: no change
CHG: increases for small values, followed by decrease
LIM: increases until T, becomes positive, followed by no change

We also note that the variance of cost to the government is given by (1 — b)’ZU,?,P,‘ where p, is

!

the probability that the i firm will receive the production contract. When o, is independent of i
which is the case here, the variance of cost to the government is (1 — b)zc,f, and this will always

decrease with b.

Because increase in the risk sharing parameter bring about strict increases in total cost and total
quality, risk sharing allows the government to obtain a cost/quality trade-off consistent with its goals.
However, one may expect that beyond a certain point, quality increases slowly with 4 (and in the case
of the monopoly firm, will not increase at all), while cost continues to increase proportional to increas-
ing ». This is the point where the target, or one or more of the targets for nonidentical firms, becomes
positive.

The situation is more complex when the total government budget is partitioned between the
development and production stages. We note that total quality increases as G, increases, because an

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 29, NO. |, MARCH 1982
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increase in G, relaxes the design-to-cost constraint. But, expected cost to government and the variance
of that cost remain constant. Thus, the incentive to the government is to make G, as large as possible.
However, there may be a limit to the size of G,—that is, it may not be possible to lel G, equal G—
because the firms may refuse 1o compete due 1o inadequate compensation during the development
stage.*

With regard to industry structure, in many cases variables such as cost, quality, and profit have
the same relationship to each other for all values of b and/or for all values of G,. This is ilfustrated in
Table 5. The government receives the highest quality weapon at the same or 4t lower cost when two
different firms are competing for the contract, whereas it receives the lowest quality system at the same
or at higher price when the industry structure is monopolistic. This is an expecled result. Expected
profit is highest for the monopoly firm and is lowest when the industry consists of two identical firms.
The two-firm industry receives more profit when the firms are different, because one of the two firms is
less productive than the other, and the decrease in expected profit for this firm is not offset by the
increase in expected profit for the more productive firm. In general, one would expect the benefits of
competition to diminish as the quality of the inefficient firm decreases. When the inefficient firm has

low quality, the efficient firm will not perceive a credible competitive threat. Sc. increasing
government's expenses on development does not repay in increased quality.
TABLE 5 — Impact of Industry Structure on Variables for all Values of b and of G,
For all values of b For all values of G,
Two Two Two Two
Variable Differenl lde'ntical I?I?:] Differenl lde.nlical }9.?;
Firms Firms Firms Firms
Expected Quality H M L H M L
Expected Cost to S S H S S S
the Government
Expected Cost to H M L F F F
the Firms
Expected Profit M L H M L H
of the Firms
Intangible Reward H L M H M L
(Method 1)
Intangible Reward
(Method 2) H M L ¥ F L
Variance of Profit H M L H M L
Variunc? of Cost S S S S S S
to the Government
LEGEND:
H: high value
M: medium value
L: low value
S:  same value
F: fluctuates

*We assume that firms have an incentive to participate in the development stage, even if their expected profit 1s negative or s
below their alternative carnings opportunitics. For example. the firms may wish to "stay in the game” and remain visible to
DoD. a type of follow-on benefit not quantified in our model. However, within this constraint they wish to maxvimize expected
profit plus follow-on benefits, which will fead the winner of the production contract to minimize his effort dunng the production
stage when these follow-on benefils are nonexistent (i.e.., when h, = 0) As we note in Section 6, examining the effects of re-
moving this assumption is an important topic for tuture researc
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The results described above are based on the assumptions that all firms in the industry will coni-
pete for the production contract regardless of the expected profits and that the government will aliow alt
firms in the industry to compete (by paying a fixed cost for development) regardless of the productivity
of the firm. These assumptions do not give rise to anomalies within the parameter rangcs used here,
contrary to expectation. For example, we observe that an increase in G, (and a corresponding decrease
in the funds paid to the firms for their development efforts) results in an increase in quality with no
change in the expected cost to the government, and also results in an increase in expected cost to the
firms, regardless of industry structure. However, in reality, most firms have alternative uses for their
resources (current and fixed assets, experienced managers, skilled workers, etc.), and some of them
may decline to participate, once their expected profits do not compare favorably with those obtainable
elsewhere. In fact, the existence of a negative constant term K, (y.b) in (23) can result in negative
expected profits for suitable contract parameter values. This will almost certainly cause a firm to with-
draw from participation at the development stage.

Generally, the selection of government contract parameters (G,, y, b, and @) must be compatible
with the alternative earning opportunities of the firm. Such alternative market opportunities determine
a set of contract parameters for each firm at which the firm would be willing to participate in the
development effort and compete for the production contract. The government will desire a possibly
different set of values for the contract parameters, for which the cost is low, variance of cost is low and
the quality is high. The government must choose its values of G,, y, b, and a from the set of contract
parameter values which will guarantee prospective contractors earnings opportunities as attractive as
their alternative market opportunities.

Figure 1 illustrates an example of this tradeoff. The figure shows a situation where the efficient
and inefficient firms expect returns higher than $102, 300,000 and $62, 800,000, respectively. This
expectation leads the firm to accept b and G,/ G only in specified ranges (as shown by the shaded area).
The government has to choose its acceptable b and G,/ G depending on budget allocation, risk sharing,
and other parameters. If these parameter values of the government fall in the shaded area, the govern-
ment can expect the firms to bid for the project. If not, the government may have to revise its policy.

6. CONCLUSIONS AND FURTHER RESEARCH

We have examined the impact of dynamics and hierarchy. including industry structure. on
government and industry behavior in a design-to-cost context, using a model of the weapons acquisition
incentive process. Most of our results are a quantitative verification of what we would qualitatively
expect. As risk sharing increases, the firms put forth more effort (except for the monopolistic firm dur-
ing the development stage) and produce a better quality weapon at higher cost. The major counterin-
tuitive result is that the variance of the government’s cost decreases, and for some values of the
economic and technoiogical parameters, the variance of profit of the firm decreases as the risk sharing
by the firm increases. In addition, the government receives a higher quality weapon for a fixed budget
when it deals with competitive firms than it does when it must deal with a single monopolistic firm. and
within limits, the quality increases when bidding firms are diverse in their capabilities. The government
also receives a higher quality product when it invests a higher percentage of its budget in production
(relative to development), unless the shift in investment causes some firms to withdraw from the com-
petitive development phase of the acquisition process.

The interaction between government policy and industry structure suggests a productive direction
for further research.* Government policies influence industry structure and also affect the structure of

*We are grateful to the referee for pointing out that DoD Directive 5000.28 on Design 10 Cost is undergoing revision. 1t is possi-
ble that the research reported here or future research of the type suggested in this section will be of use tn formulating these and
other government acquisition policics.
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FIGURE 1. Areas of Firm Acceptability

the subset of the industry participating in the acquisition process and possibly in the long-term, the
structure of the defense industry as a whole. In order to model the interaction between government
policy and industry structure, we must determine three characteristics of the firms in the industry. The
first characteristic, as mentioned in the previous section, is the spectrum of alternpative earnings oppor-

| tunities of the tirms. The availability of these opportunities may lead some firms to withdraw from the
development stage of the acquisition process. In contrast, the opportunities may lead other firms to
participate in the hope that resources acquired during the project (skilled workers, experienced

i managers, etc.) may be useful in other areas, thus increasing the follow-on benefits of the project. The
second characteristic is the range of risks that these opportunities present to the firms, which may lead
some firms to decline to participate in the development phase of the project. The third is the firms’
perceptions of future government actinns (such as future projects, design-to-cost goals, and incentive
parameters), and especially. of the uncertainty associated with these acticns. It has been posited that a
major blocking factor in industrial innovation is industry perception of the uncertainty in future govern-
ment regulations and specifically that "the uncertainty of federal requirements, rather than their
stringency, was perceived as the most important biocking factor,”* Thus, government parameter setting
behavior, established during a sequence of projects. may induce perceptions and uncerlainties about
future government actions that will influence significantly the attractiveness of defense contracting to
individual firms and thereby the structure of the defense industry.

*See Myers and Sweesy (130 page 29, for the quotation,
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OPTIMAL STRATEGIES IN A GAME OF ECONOMIC SURVIVAL
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ABSTRACT

The games of economic survival introduced by Shubik and Thompson seem
tailor-made for the analysis of some problems in insurance and have found
many applications in this industry. The optimal strategy in such games may be
a so-called "band strategy.” This result seems counter-intuitive and has caused
some puzziement. This paper gives sufficient conditions so that the optimai
strategy will be of a simpler form, and it is argued that these conditions are
satisfied in most applications to insurance.

INTRODUCTION

The term "economic survival game" is really another name for the classic problem of the
gambler’s ruin which can be traced back to Pascal. The new term is usually associated with Shubik and
Thompson [11], who extended some of the classic results to games of strategy. This generalization in
itself may not have been particularly fruitful, but it led to an increased interest in the multi-period
one-person game against nature. It is the starting point of the papers by Miyasawa [7] and Morrill [9].
and the general ideas are behind the book by Dubins and Savage [4]. A few years earlier De Finetti [3]
presented a similar model, as a generalization of the older actuarial theories, based on the probability
that an insurance company shall become insolvent or "ruined.”

Miyasawa and Morrill both show that the optimal strategy can be a "band strategy” —a concept to
be explained in the next section. Strategies of this form are not intuitively appealing and do not scem
to agree well with observations when the model is applied to situations in real life, but they have been
studied for their mathematical interest by several authors including Hallin [6]. The purpose of this note
is to show that a band strategy can be optimal only in fairly exceptional cases.

The presentation is given in terms of insurance, which was the application Morrill [8] originally
had in mind. This interpretation was also the starting point of De Finetti, and his models have been

developed and discussed extensively in actuarial literature, by, among others, Borch [1]. Biihimann {2]
and Pentikdinen [10]. It is, of course, possible 1o give other interpretations to the model.

THE PROBLEM

De Finetti’s starting point is an insurance company which underwrites identical portfolios in each
consecutive operating period. Let the portfolio be characterized by:

P = premiums received in an operating period.

x = claims paid during the period. a stochastic variable with the distribution F(x).
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Let S, be the company’s equity capital or "surplus” at the end of period r. Clearly, S, follows a rundom
walk defined by:

Sa=S+P-x

In insurance it is natural to assume that if S, < 0 the company is ruined and is not allowed to
operate in the following periods.

At the end of period 1, the company may consider paying a dividend, s, € (0. S,). The problem is
then to find the optimal dividend policy. De Finetti studied different assumptions about the company’s
objectives. One of these was that the company would seek to maximize the expected discounted sum
of the dividend payments:

) E{Y Vs,
=0
where v € (0.1) is the discount factor.
Let ¥(§) denote the maximum, i.e., the expected discounted sum of the dividend payvments if

the initial equity capital is S and if the company follows an optimal dividend policy. 1t is casy 1o see
that V' (S) must satisfy the functional equation:

S+P-s
(2) V(§)= max |s +v f V(S — s+ P — x)dF(x)|.
0<s<S .

Essentially, early dividend payments are preferred, but a high dividend implies a low retained
surplus and hence a high probability of ruin, i.e., that the payments will terminate. Une would there-
fore expect that an optimal s exists for any value of S.

Equation (2) can be solved by standard methods of dynamic programming. and Mivasawa and
Morrill have shown that the optimal dividend policy is of the form:

s=10 for §< 2
S=S“‘21 fOl' Z|<S<22
s=0 for Z,< S K Z;

s=5-— ZZn-H for 22,,4.] < §

A policy of this form defined by a set of 2n + 1 numbers, is called a "band strategy” bv Morrill.
The special case with n = 0 he calls a "barrier strategy.”

A band strategy implies that a company may omit or reduce its dividend after a successful operat-
ing period. and this seems to be contradicted by the business behavior one can observe. The barrier
strategy does not invite the same objections. Essentially, it implies that the company decides that it is
optimal to maintain a certain equity capital Z. No dividend is paid if the equity capital is below this
level. If the equity capital exceeds Z, the excess is paid out as dividend immediately. This seems rea-
sonable and suggests that, in normal cases, a barrier strategy may be optimal.

Assume now that the company decides to adopt a barrier strategy defined by 2 number 7. not
necessarily optimal. The expected discounted value of the dividend payments under this policy is
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S+P
(3) Vs, Z) = vfo VIS + P — x Z)dF(x).

If a density, f(x) = F'(x), exists, this is an integral equation with the boundary conditions
VS, Z)=0forS < O0and V(§, Z)=S~-Z +V(Z Z) for S = Z

The equation has a unique continuous solution for any nonnegative value of Z. Morrill’s result
implies that the solutions in Z to the equation

av(s Z)
9z

are independent of S. A barrier strategy will be optimal only if (4) has a unique root in Z.

4) =0

A SOLUTION OF THE PROBLEM

The integral equation (3) can be solved, and it is possible to study the roots of (4} by this direct
approach. It seems, however, more convenient to take a roundabout way and consider a rather naive
dividend policy. Assume that at the end of a profitable operating period the company pays the whole
profit out as dividend immediately. If the period has given a loss, no dividend is paid.

Let W(S) be the expected discounted sum of the dividends paid under this policy when the
company’s initial capital is S: The function W (S) is clearly a solution of the integral equation:

P P S+P
(5) W)= [ (P-x) fyax+vW(S) [ fude+v [ WIS+P—x) flx)ax

which evidently is far simpler than the functional equation (2). Setting the first term on the right-hand
side in (5) equal to C, and rearranging the other terms, the equation takes the form

(6) (1= vEPNW(S) = C+v [ W(S—x) f(x+P) dx

Taking the Laplace transform of (6) one finds:

{1-vF(P)} fow W(S)e SdS = —f + {v fow W(x)e‘"‘dx] [fow flx+ P)e "dxi.

Writing
1-vF(P)=K
and
S rx+Preax = 60

the equation takes the form

C

(7N tj;] Wix)e %dx = m

The left-hand side of (7) can be written
T We = W) + [T Wiioeax

Asve (1) < ¢(0)=1—- F(P) < 1 — vF(P) = K for v < 1, it follows that the right-hand side of
(7) can be expanded in a convergent series. Hence:
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= Wix)e- 3l lol
(8) S, Wwema+ wo) = ¢ pa [K ¢(r)] .
By taking S = 0 in (6) one sees that W (0) = ‘1§<' so that (8) can be written
o0 , . _ oo -lv_ n
9) J wwe=ac= wo p3 [K s .

(¢ (1)) is the Laplace transform of the nth convolution of f(x +p) with itself, which will be denoted
by /f,(x). Hence, f,(x)= fo SOV (x+P~y)dy for n>1, and let by definition
f,(x) = j(X + P).

Taking the inverse transform of (9), one obtains:

(10) W)= WO ¥ ’%I o).
n=1

From (10) W (x) itself can be found by integration:

oo

Wix)=wo) ¥

n=0

v "
?] F,, (x).

This result can be verified directly. To show this, introduce a distribution G (x) defined as fol-
lows:

G(0)= F(P)
G(x)=1+ x+P) for x> 0.

Substitution of this in the calculations above gives
Wi(x)=C{1+ vG(x) + v} G,(x) ... }.

G,(x) is the probability that accumulated losses in n periods shall not exceed the initial equity
capital x. If this event occurs, the expected discounted value of the next dividend payment is v'C.

The convolutions G,(x) have a complicated form, and this symbol will not be used in the follow-
ing.

The expansion (10) is, as noted, convergent, and W (x) as a discounted sum of distribution func-
tions is a bounded and nondecreasing function of x. From (6) it follows that

- ¢
W) = 1-vF(P)" k

Further, it is easy to see without any calculation, that

-_< _¥ d
W) = 1= 3 v [ (P-x)fxax

The equation says that if the equity capital is infinite, the company will never be ruined, and the
expected dividend will be equal to expected profit in all future periods.
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From (10} it follows that
W) = W(O)% f£(P)
and
W (o) = 0,
A SUFFICIENT CONDITION THAT A BARRIER STRATEGY IS OPTIMAL

Consider now the equation l
an wi(z)=1.

It can be shown that the solutions of (4) and (11) coincide. This is a tedious procedure, and one
can arrive at the result by an indirect approach.

If Z is a solution of (11) and if the company’s capital at the end of an operating period is Z + =
with z > 0, we will have, at least for z, sufficiently small

W(Z +:)< W(Z)+ 2

Hence, the expected discounted sum of the dividends paid will increase if the company departs
from its naive policy and immediately pays the amount z out as dividend.

Similarly, if the capital is smaller than Z, it will be optimal to retain profits until the capital has
been brought up to Z before paying any dividend.

A sufficient condition that equation (11) has a unique root is W'(0) > 1 and W"(x) < 0.
Differentiation of (10) gives

(12) Wix) = W) 3, [7% £10x),
n=1

From the definition of the convolution, it follows that:

fa(x) =fox‘/',,_l(y)f(x-f-P—y)dy for n 2 2.

Differentiation of this expression gives: 1
S0 = 1PV 0+ [ S O+ Py dy
and by definition
Silx) = fllx+P).

Substitution of these expressions intd (12) gives

(13) W (x) = WI(0) %

flx+P)+ % F(P)f(x+P)

oo

+ W) Y [fn LG (x+P— v + —,“'—./(P)f"m].
n=2

~
K

VOL. 29. NO. |. MARCH 1982 NAVAL RESEARCH LOGISTICS QUARTERLY ﬂ

— 4




24 K. BORCH

The first term in (13) is negative if

(14) Flx+P)+ % f(P)f(x+P) <.

Substitution of
SaHP=y) == [(PY(x+P=y)

in the following terms, shows that they all vanish. Hence, (14) is a sufficient condition that
W' ix) < 0.

Condition (14) can be written:

f'(x+P)

\%
Tarp) g /P

and this gives

Fx+P) < f(Pe K F(P)x.

Hence. equation (11) will have a unique root if the claim density goes to zero at least as rapidly as
an exponential.

A necessary, but not sufficient condition is that f'(x + P) < 0 for x > 0. For a unimodal distri-
bution this condition will be satisfied when P is greater than the mode. The typical claim distribution in
insurance will be skew, with a {ong tail. For such distributions the mean will be greater than the mode,
and the premium P will again normally be greater than the mean, i.e., than expected claim payments.

If the necessary condition is satisfied, the sufficient condition (14) appears as a mild regularity
condition for the tail of the distribution, and the curious cases found by Miyasawa and Morrill may be
dismissed as interesting but not very relevant.

Clearly, the company will not find it optimal to maintain positive reserves unless

W) > 1.

Substitution of the expressions derived from (10) gives the condition in the form:

P
v_f'(P)fO (P—x) f(x)dx > (1~ vF(P)~

Since the left-hand side will go to zero with P, it follows that the premium must be above a cer-
tain level to induce the company to risk any part of its equity capital as reserves in the underwriting
business. The company will, however, not refuse to underwrite any portfolio, since it cannot lose
unless it put some of its own money at risk. .

SPECIAL CASE

As a simple special case assume that the claim density is exponential, i.e.,

flx)=¢"
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Substitution in the general formula gives:

C ve f (1-v)x
Wix) = - -
(x) 1—v [] l—v4ve ® exp[ l—v+veP]
Cve ? (1-v)x
Wix) = —SYE exp |- —U=VIx |
x) (1—v+ve F)? exp 1-v+ve?

1-v
l—v+ve ?

iZ
i+eF

It is easy to see that W “(x) < 0, and hence that a barrier strategy is optimal.

Equation (11) which determines the optimal strategy takes the form

Z=InC+Inv—=P~-2In(1-v+ve P,

or by substituting the expression for C and writing v = (1+7)~",

=InP-1+e )~ 2In(1+i)~ P—=2In(i+e "),

The table below gives the value of Z for some selected values of P when i = 0.1.

Premium P | Optical Reserve = Z | Ruin probability ¢"<°°

1.0 Negative -

1.2 Negative -

1.3 0.166 0.23

1.4 1.052 0.086

1.5 1.42 0.054

2.0 2.28 0.014

3.0 2.14 0.0059

4.0 1.47 0.0042

7.0 0 0.0009

25

The table shows that increasing P will increase the quality of the insurance contracts, i.e., reduce
the probability of ruin. It should not be surprising that Z will decrease with increasing P for large
values of P. If the level of premiums is very high, there will be a very low probability that the
underwriting shall lead to a loss, and the incentive to maintain additional reserves will be reduced.

RELEVANCE TO INSURANCE

The barrier strategy may be less objectionable than the band strategy, but it still does not agree
very well with the observations one can make of dividend policies in real life. If an insurance company
has had an exceptionally profitable period, it will usually pay out only a part of the profits as dividend.
Sometimes this is justified by an explicit statement to the effect that it is desirable 10 retain some profits
in order to safeguard future dividend payments. This clearly contradicts the assumption that the
company’s objective is to maximize (1),

Even if the company and its shareholders seem to agree that the objective should be to maximize
an expression of the form (1), one may observe apparent departures from the barrier strategy. This
may occur just because the model is too simple to give an adequate representation of the complex real
world, but a number of other possibie explanations suggest themselves, among other things:
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(i) It may be considered fair that the insured, i.e., the policyholders, should receive some
benefits after a very profitable period. One way of arranging this would be to increase the company’s
reserves, and thus reduce the probability of ruin in the next period, i.e., improve the security of the
policy holders. In some countries the governments seem o try to induce insurance companies to take
this attitude and maintain a conservative dividend policy.

(ii) The managers of an insurance company may rightly or wrongly believe that they will be
blamed for sharp reductions in dividend payments. Their natural reaction may then be to argue in
tavor of a conservative dividend policy which, incidentally, will increase the expected life of the com-
pany and, hence, the job security of managers and other employees.

One will get a smoother sequence of dividend payments by assuming that the company’s objective
is to maximize

(15} Y vids,)
=0
where u (s) is a concave utility function.

This generalization of De Finetti’s model has been studied by several authors, by, among others,
Hakansson [5], who finds that, for a particular class of utility functions, the optimal strategy is of the
form s = ¢S. This means that at the end of each operating period the company pays out a fraction, g,
of its equity capital as dividend, and represents behavior in conformance with observations. The objec-
tions to criterion function (15) are essentially of a theoretical nature. If the company should reduce the
scale of its operations, or stop selling insurance altogether, it would find it optimal to pay out its equity
capital in an infinite decreasing sequence. This might make sense in the consumption plans discussed
by Hakansson but not for a dividend policy.

The discount factor v which appears in the formula, should be based on an interest rate which
represents a pure risk premium. The company’s reserves can be invested to earn a return, which could
be paid directly to the shareholders as owners of the capital. Thearetically, they could even keep the
capital, provided that they accept liability for possible losses in the insurance operations. Government
regulations will usually require that the reserves should be kept in low-risk assets, which also must be
of fairly liquid nature, since the reserves can be called upon at short notice to pay claims. This means
that the rate of return on the reserves will be modest, probably close to the risk-free market rate of
interest. The shareholders risk their capital as reserves in the insurance company and will require a
higher expected return. This interest differential seems to be the one to use for determining the
discount factor.
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ABSTRACT

The objective of a diagnostic analysis is to provide a measure of perfor-
mance of an existing system and estimate the benefits of implementing a new
one, if necessary. Firms expect diagnostic studies to be done promptiy and
inexpensively. Consequently. collection and manipulation of large quantities of
data are prohibitive. In this paper we explore aggregate optimization models as
tools for diagnostic analysis of inventory systems. We concentrate on the
dynamic lot size problem with a family of items sharing the same setup. and on
the management of perishable items. We provide upper and lower bounds on
the total cost to be expected from the implementation of appropriate systems.
However, the major thrust of the paper is to illustrate an approach to analyze
mventory systems that could be expanded to cover a wide variety of applica-
tions. A fundamental by-product of the proposed diagnostic methodology is to
identify the characteristics that items should share to be aggregated into a single
family.

1. INTRODUCTION

Inventory-control theory provides a wide variety of models to manage effectively products with
different characteristics. Extensive surveys are available that culminate in a taxonomy identifving
specific decision rules 1o manage inventories under a number of conditions. (Silver [7]. Nahmias [5].
and Aggarwal [1].) A very legitimate concern of many managers today is to understand the extent to
which these models could contribute to the enhancement of the performance of their current inventory
| svstem. Consequently, management-science practitioners are frequently faced with requests to estimate
the benefits for improving the performance of such systems. Firms expect that the estimation process
in itself will not represent a major project and consume a considerable amount of human and financial
i resources: the analysis must be reasonably accurate and inexpensive.

Two basic approaches have emerged to comply with those requirements. One. the statistical
approach. is based on analyzing the inventory performance on a relatively small sample of items and
generating inferences that can be applied to the whole population. The other approach. based on
optimization techniques, consists in devising simple models to estimate the benefits of implementing
the proposed system.

The simplified models are derived by aggregating items into families, thereby reducing the data
collection and computation efforts. The ultimate objective is the generation of bounds relating the
agpregated model to the original problem. Zipkin [12] and Evans [3] have developed such bounds for
lincar and transportation models, respectively.
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The management-science literature has rarely addressed the identification of problems and the a-
priori measurement of benefits to be derived from the implementation of a proposed new system.
Recently Hax., Majluf and Pendrock [4], and Wagner [9] have stressed the importance of developing
diagnostic analysis tools. In particular Hax, Majluf and Pendrock [4] report the results of a diagnostic
analysis of a large logistics system.

In [2] we illustrated how statistically-based techniques, like clustering, inference and sampling,
may be used in diagnostic studies. In this paper we focus on the application of aggregate-optimization
models. In Section 2 we concentrate on the dynamic-lot-size problem with a family of items sharing
the same setup. We examine an aggregation scheme and compute upper and lower bounds on the total
cost 1o be expected from the implementation of appropriate systems. We also provide conditions under
which the solution to the aggregate problem solves the original problem. In Section three we analyze
the management of perishable items. An aggregate version of the newsboy problem is studied and
bounds are determined. Conclusions and topics for future research are discussed in the last section.

We would like to emphasize that although this paper examines two classes of inventory models,
our aim is to propose a general approach to design diagnostic methodologies that could be easily
extendable to a wide spectrum of optimization models. Moreover, we hope that the result of our
analvsis not only contributes to the development of quantitative measures to evaluate inventory perfor-
mance, but also provides insights into the conditions that have to be met by the items to become candi-
dates for aggregation into a family unit. This last resuit could contribute to the important subject of
aggregate planning.

2. LOT SIZE PROBLEMS: A DIAGNOSTIC ANALYSIS

In this section we develop diagnostic procedures to estimate ordering and inventory carrying costs
associated with the operation and management of a family of items replenished in lots. The objective
of this procedure is to obtain estimates of total costs while reducing as much as possible the massive
manipulation of data and the computational requirements. We derive error bounds for aggregate prob-
lems and rules indicating how to aggregate the items in a family to minimize such errors.

We address practical situations in which all items in a family are replenished simultaneously and
share the same ordering costs.

Whenever the items in the family satisfy the conditions underlying the economic order quantity

system [6], the total annual cost of ordering and holding the family in stock is easily shown to be

N
(2.1 7C = V25r Z (D;v,)

i=1
where S, r. D, and v, are, respectively, the ordering costs, the inventory carrying factor, the annual
demand of item i, and the unit cost of item i The cost of holding in stock one unit of product i for
one year is rv,. Therefore, (2.1) can be rewritten as

TC = (production cost of family)V2 +/2Sr.

In this case total ordering and holding cost for the family of items can be readily computed from
aggregate data. However, when the assumptions underlying the economic order quantity system differ
significantly from the actual conditions, the estimation of the costs must be based on more complex
models.

In what follows we assume that the demand for each item in the family. in each period 1,2, ... T,
is deterministic. The inventory control problem then, is to solve the following mixed integer program-
ming problem:
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T N N N !
(P) zp=min f(x) = Y |S8|F x|+ ¥ piux., + Yh, Y (x.-d)
=1 i=1 i=1 =1 re=1
subject to
t
Y &,~-d)20 =12 .., Tii=12 .., N
=]
x.20 r=12,. T,i=12 , N
N
1 1f2x,-,, >0
N i=1
8 le.l = N
i=1 0, ify x,<0

where p,,, h,,, d;,. x,, and S, are, respectively, the unit cost, holding cost, demand and amount ordered
for item i in period «, and the ordering cost in period r. Without loss of generality. we assume that the
initial inventory is zero.

We will compare problem (P) with the solution obtained from the following aggregate problem:

T t
(4P) zZap=mine () =Y IS8(p) +py, + h ¥ ., ~ d,)
r=1 =]
subject to
!
Y. -d)20 (=12 .., T
Te=]
y.20 7=1,2 ..., T
1, ify, >0
6(}/,): 0' lry,<0 f=l,2,...,T

where p,, h,, d,, y, and S, are the unit cost, holding cost, the demand and amount ordered for the fam-
ily in period 1, and the ordering cost in period . We assume that y, and d, are defined as follows for

conveniently selected constants k, > 0, i= 1,2, ..., N:
N

(2.2) =Y kx,t=12 ..., T i=12 ... N
=1
N

(2.3) =Y kd, 1=12 ..., T i=12 .., N
=1

Therefore, if x,, i=1,2, ..., N.+r=1,2 ..., Tis feasible in (P), y, r=1,2, ..., T defined

as in (2.2), is feasible in (4P). Wagner and Whitin [10] provide an efficient dynamic programming
algorithm to solve (P) and (4P).
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The expression below, for a pair (x, y) satisfying (2.2) and (2.3), is useful in our development.

T N
2.4) LX) = oly) =% S,l& IR B 5(‘1',)]
=1 i=1
T N ! ! N
+ 2 z hi.l 2 (Xi,'r - dl,f) - hl z (yr - d') + zpi,l‘xl.l = Py
=1 li=] =1 =1 i=1
T N ! T N
= z Z @ (h’-’ - h’k’)(x'v" - dl") + Z z Xl.l(pi,l - klpl)'
=1 i=1r7=1 =1 i=1

The second equality iollows from (2.2), (2.3) and the fact that

N
) lz x,‘,]=8(y,) t=12 ..., T
i=1

PROPOSITION 2.1 (Theorem 6 in [8]): (P) and (4P) have at least one optimal solution of the
form

!
(2.5) Y .= d X =0 =12 ... Tii=12 ..., N

=1

1
(2.6) Y0 —dIya=0 =12 .., T

re=]

Note that (2.5) and (2.6) characterize the extreme points in (P) and (4P), respectively. The
proposition indicates that in order to compare zp and z4p. it is sufficient to consider feasible solutions of
(P) and (AP) such that in each period, either the initial inventory is zero, and eventually an order is
placed. or the initial inventory is positive and no order is placed.

PROPOSITION 2.2: Lety, t= 1,2, ..., T be feasible in (4AP) and assume it satisfies (2.6).
Then, there is a unique set x,, r=1,2, ..., T.i=1,2, ..., N feasible in (P) such that », and x,,
are related as in (2.2) and x,, satisfies (2.5).

Whenever x,, andy, i= 1,2, ..., N, r= 12, ..., Tar2 as in Proposition 2.2 we will say that
they are corresponding feasible extreme point solutions.

Unfortunately, if y, r = 1,2, ..., Tis an optimal extreme point in (4P) the corresponding feasi-
ble extreme point solution in (P) need not be optimal, in general, in that problem. In fact, it is not
even true, in general, that the optimal value of one of the problems is a lower or upper bound of the
other. Two instances where a relation between zp and z4p is known a priori are given in the next two
results.

PROPOSITION 2.3: If k.p, and h, are chosen such that p, ~pk, <0, h,~ hk <0
(p., - pk, 2 0, h,~ hk = 0) for ail i and all ¢, it follows that

qp P Zp (Z‘,‘p < Zp).
PROOF: Follows by Proposition 2.2 and Expression (24). O
COROLLARY 2.1: Assume the unit and holding costs p,, h, i=12 .... N and
t=1,2, ..., T remain in the same proportion for all « i.e, p, = kp,. h,= kh, for some k, > 0,

p, > 0 and h, > 0. Then, zp = z4p as long as p, and h, are used in (4P) as the underlying unit and
holding costs.
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PROOF: Follows by Proposition 2.3. 0o.

A special case of Corollary 2.1, of interest in practical settings, is when the unit and holding costs
are constant for each item over the planning horizon and the holding cost is proportional to the unit
cost. In these situations p;, = p;.h,, = h, and h;, = rp; for all items and therefore zp = z4p.

Even when the conditions of corollary 2.1 do not hold, we may prefer to solve (4P) instead of
(P) either to save computational work or because family demand data is readily available or even
because family demand can be forecast with greater accuracy than item demand. k; and A, can always
be chosen to satisfy the conditions in Proposition 2.3. However, the gap between zp and z,p can be
greater than desired. In what follows we attempt to measure this aggregation gap under quite general
conditions.

In the remainder of this section we assume the following:

T N D,
k =1, D'=’§d,.',, D=‘=ZID,-, a=
N N

D, = Z dp dyy =D+ v, b=

i=1 i=

N
¢p;, and b = 2 il
1 i=1
where, for all expressions
i=42 ..., N,+=12 ..., T

Note that
N T
2.7 z i, = z v, =0
i=1 r=1
for all i and +.

Let x be feasible in (P) and let

N
Rx)={r:1<t<T Y x,> 04
i=1

For ¢ € ®(x) we denote by n(x, t) the smallest integer in #(x) U {T + 1} larger than + i.e.,
nix, 1) =min{r:r > 1 €Rx) U {+t+ 1}}.

R(x) and n(x, t) correspond, respectively, to the set of time periods when any production occurs
and the next such period after «.

Assume X is an optimal extreme point of (P). Then,

T N N nlin)—1 n(z0-1 -1

p = z S8 Z Xl + z Z Dir - Z d.+ 2 .. Z -
=1 i=1 re Rix) i=1 Tt r=r+1 u=

Let 7 be the corresponding feasible extreme point solution to x in (4P) then,

r _ N fnlxe)-1 nlxri-1 r—1

»=3550)+ ¥ 3| ¥ rd.+t 3§ 4.3 h
=1 re pix) =1 r=7 rem+] umr
T N | nteo- nix-1 -1

= 2 S8+ Y z Y prleD, +v, )+ 2 (D, +¢,.) Y hy

1=1 1o Aly) =1 T=y =i+ u=t
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nlx ey |
Zsa(»,)+ Y oD+ ¥ D, +Zh ]
1€ #ix) Tt
N atxri-1 r—1 _
+ z z Pit ¥t + 2 Y|P + Z hl.u 2 24p + (b(x)
1€ 2ix) 1=1 r=r+] u=1
where
_ N nlx,1)-1 1
(2.8) )= ¥ Y (puv.t X elpat+ T Al
re Aty i=1 r=1+1 u=1

We have just proved

PROPOSITION 2.4: If X is an optimal extreme point of (P),

zp 2 z4p + O (X).

Similarly, define for any extreme point y in (4P)
Ry)={r:1< 1< T y >0
and
n(y, ) =min{r:r > r€2G) U (T +1}}.

Let ¥ be an optimal extreme point of (4P) and % be its corresponding feasible extreme point solution
in (P). Then,

T nly,00-1 1 T N
Z4p = z S8G,) + z pD, + Z D.|p + Z hu' = Z Slslz ‘.Il,
=1 €A y) r=t+1 u=t =1 =1
N niy,-1 _
+ 2 Z pi.l(dl.r - ¥’I.r) + z Di: + 2 hlu (dl7 ¢l,r) 2 p — l‘(‘r)
1€A(y) i=1 r=t+1 u=t
where
L n(yo)-1
(2.9) rey) = 2 2 Pt 2 LR p:l+2h:u
1€ Aly) = =1+l
Consequently,

PROPOSITION 2.5: If y is an optimal extreme point of (4P),
Zp < Z4p + I(_P)
COROLLARY 2.2: If y and X are optimal extreme point solutions of (4P) and (P). respectively,
then

‘b‘i) S Zp T 2Z4p S I(;)

Note that x and y need not be corresponding feasible solutions in Corollary 2.2.
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Corollary 2.1 shows that if the unit and holding costs, for each item in the family, remam in the

same proportion, then zp = z,p. A similar result holds for the demands even when 4, = z ¢h,,
1=1

N
and/or p, # ¥, ¢;p;,-

i=1

COROLLARY 2.3: Assume that v ,,=0i=1,2, ..., N, =12, ..., T, thatis, d, = ¢D,.
Then

Zp = Zap.

PROOF: From (2.8) and (29) we have ®(x)=T(@)=0 and by Corollary 2.1,
0< Zp — ZAP 0. Hence, Zp = Zup. 0

Corollary 2.3 provides an interesting interpretation of problem (4P). More specifically, it shows
that solving the aggregate problem is equivalent to solving the detailed problem with the demands 4, ,

replaced by ¢;D, =
holds:

3’ D,. In fact, under the conditions of the corollary, the following stronger result

PROPOSITION 2.6: Under the conditions of Corollary 2.3, f(x) = ¢(y) for every pair x. y of
corresponding extreme points.

PROOF: Note that B(x) = Z(y) and n(x, t) = n(y, t) forall t € R(x) and Z(y).

nix0)~1 [r=-1
Sflx) = 2 S$d 2 x| + 2 2 [pi,ldi,l + 2 2 hiy + i di.r]
i=1 1e€R(x) y=t+1 Ju=¢
n(,1)-1 [r=1
= 2 S8(,) + 2 2 pi D, + z 2 hiy + P 6D,
i=1 1€ (y) r=r+] |u=1
n{y,0)-1 fr—1
= ZS,S(y,) + ):O pD,+ Y |X htp| D= e0). =
=1 tex(y) r=r+1 |u=¢

We should note here that the conditions of Corollary 2.3 (proportionality of the demands) are
equivalent to requiring the multiplicative seasonal factors of the different items to be equal period by
period. In what follows we prove this result.

PROPOSITION 2.7: Assume that we fit the model 4, = s5,,(by; + b, ;) to every item i. where
by, and by ; are determined by the least squares method, and the s;, are the multiplicative seasonal fac-
tors defined according to Winters [11]. Then, if the demands are proportional as required in Corollary
2.3, it follows that 5, = 5, forall i= 1,2, ..., N,/=12 ..., Landt=12, ..., T.

PROOF: For each of the N items the offset value by, and the linear trend b, ; have the property
of minimizing the sum of squares of the seasonal variation:

D,
2 (Y ] (t~1) r
bii= =AY (Td, - D)t~ 1)

2(1 -2 =1
=1

bO.l =5 T bl.l,
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where

T -
Y (1)
__ =1

- 1+T
A== _ =
T and ¢ 2
the seasonal factors are
. VI
M bO.l + ’bl.i .
Assuming proportional demands: d,, = k;;d,, i= 1,2, ..., Nt=1,2, ..., Tfor ageneric item i

and a fixed "base" item /, we get
diy = ki (boy + thy s, = s, (k by, + tk, by,

but
T _ r _
by =AY (Td, - D)t ~1)=A4Y (Tk,d, — kD)t — 1)
=1 =1
T -
= k,',A 2 (Td[., - D[) (t—1) = kl,/bl.l
=1
and
Di - kl,lDl -
bo,i = N byt = 5 - ki byt = kiibg,.
Therefore,

d., = s,(by, + tby,
which implies:
S,=s, i=12 ..., N 1=12 ..., T O

When the conditions of Corollary 2.3 do not hold it is possible to derive bounds for the gap
between zp and z4p as we show in the following development.

Let a, be defined as the maximum absolute value of the relative difference between each period
demand of product i and its annual demand, and the corresponding ratio of the family, i.e..

4. D
D, D
(2.10) a= max ——— i=1,2, ..., N
=1.2...T d;,
1:d,,>0 D
1
Hence,
D, d,— ¢
Q.11 a,~ max |l - —L|= max [l - 2X—=
=1,2,...T d,-_, =1,2,...T d,,
1d; >0 rd, >0
= max e
=121 d,
10d >0
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Let

1,

a= max a= max |\——u=12 ..., 7T ¢t:d,>0 i=12 ..., M.
=1 2N =L2..N| d, '

Thus,

le. | <ad,i=12 ...,N t=12 ..., Tandd, > 0.

Note that when d;,, = 0,v,, = —¢;D, < 0.

For any extreme point x in (P),

N fntx)-) alx)~1 r—1
2.12) ei=| T TI'S ne.+ S 3 o,
e R(x) i=] T={ =1+ wu=1

nlx.t)—1 nix,0)—-1 1—1

N
z 2 plll‘p:,r + z Z hl.u‘pl"r
T=1

€ A(x) i=1 T=t+1 u=t
rd; >0 rd, >0

A

N [nx0)~1 nix)-1 -1
S Y Y| X opded+ T X hule,l
€ Ax) i=] T=1 r=¢+1 u=t
rd, >0 d >0
N Jnlxo)-1 nixg)-1 1-1
<a T S[Y pudit § T hud,|=alPeo) + Hplx)]
r€R{x) i=1 r=r r=¢+1 w=¢

where Pp(x) and Hp(x) are the proportional purchasing and hoiding costs in problem (P) associated
with the feasible point x.

Similarly, for any extreme point y in (4P)

N niy. -1 nlyg)-17~1
(213 ro)ll<e ¥ Y| ¥ pd.+ ¥ ¥ h,_.,d,-,,].
(€ A(y) i=1 =i T+l u=¢
! However,

i dl,r - C,-D, S Idlr - CiD'rl = |¢1,1| S adi,'r'
Thus, ifa < 1,

(2.14) d,

it

<

Substituting (2.14) in (2.13)

a n(y.)-1 N N n(yn-17-1
(2.15) Ire)l < .= 2 YD +3Y ¥ ¥ huoD.
a @ (y) =t =] =1 rer+] u=t

a

~ 12 (Pip (W) + Hyip(p)]

where P,p{(y) and H,p(y) are the proportional costs in (4P) corresponding 1o v.
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Before deriving the desired bounds we observe that if X and y denote, respectively, optimal
extreme points of (P) and (4AP) then zp and z4p can be written as

Zp = SP(;\:) + Pp(}) + Hp(})
and
24p=Sp) + Pp(9) + Hyp ()
where Sp(x) and S,p(y) are the fixed costs associated with x and y. Also, to use as reference value in

the measurement of the gap, we define

N
S, + Y pi.d;,| + max{Pp(x) + Hp(x): x feasible in (P)} = $* + (P* + H")
i=1

and

(S, + p,D,) + max{P,p(y) + Hyp(y):y feasible in (AP)} = & + (P¥ + H?) .
1

T
L4
“max

!

Therefore, by Proposition 2.5 and Expression (2.15), if @ < 1

T 2ap o IT ()]
Zhax = ZaP Y= Sp(¥) + (PP + H)puu — PipF) — Hyp(y)
a HAP(;) + PAR(f)

1=a §— () + (PP + HY) oy — Pip(P) — Hep(3)

Since (PY + H") oy 2 Pyp(¥) + Hypp(3) 2 0 and
§' 2 z24p = S4p(P) + Pup(y) + Hyp(3)
it follows that

Zp — 2
(2.16) LIS
Zmax — Zap l—a

Expression (2.16) provides an upper bound on the gap between the optimal values zp and z,p
relative to zj,, provided that @ < 1. Another gap measurement often employed in this type of analysis i
is obtained considering only the aggregate problem as a basis for comparison, i.e.,

a - —
Zp — Zup < |r(;)| < i—a [PAP(.V) + H_4p(y)]

<
Z24p Zip S + P+ Hp(G)  1-—a

(2.17)

Other upper bounds can be obtained as follows:

Zap =2 ~-P(x) < alPp(xX) + Hp(X)] <a

(2.18) < <
Zax — Zap | STH (PY 4+ HY oy — Sp(X) — Pp(X) — Hp(X) §%— Sp(x)

The inequalities in (2.18) are implied by Proposition 2.4, Expression (2.12) and the facts that
(P + HYpax 2 Pp(xX) + Hp(%) 2 0and S*— Sp(X) = Pp(x) + Hp(X).

Similarly,

(2.19) Zap ~ 2 —d(x) < |

= X 4a
2 Sp(X) + Pp(X) + Hp(x)
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Lower bounds on the value of z, are readily obtainable from inequalities (2.18) and (2.19).
These expressions imply (2.20) and (2.21) below:

X
Zap ~ Ay

(2.20) p 2 ——— ifa <1
l—a
and
Zqp
7y 2
(2.21) 2 114

Note that if the production costs p,, do not change over time, they can be dropped from the
objective function in the formulation of problems (P) and (4P). In addition, the reference costs z},,
and z},,, can be redefined as

7
Zhn = 2, S, + max {Hp(x) : x feasible in (P)}

=1

7
Zpae = 2, S, + max {H,,(y) 1y feasible in (4P))

t=1

#

in order to get tighter bounds.
We summarize the results obtained in the next proposition.

PROPOSITION 2.8: The relative gap between zp and z,p can be bounded as follows:

Zp — 2
(2.16) (1) L2 <-4 ira<i
z;nax - Zy4p l—a
Zp — 2
(2.7 ) 22 <2 _fa<i
Zip 1—a
Z - 2
(2.18) 3) ——<a
Zmax " Zp
(2.19) 4 T <
zp
Zp — Zyp Zyp — 2o
(2.22) (5) P 5 4 PP Tma e <
Zap 1 —a Z4p
(2.23) (6) L— i, @
Z4p l+ a

Expressions (2.22) and (2.23) are equivalent to (2.20) and (2.21), respectively.

Proposition 2.8 indicates that (AP) is a good approximation 10 (P) whenever the value of a is
"small.” When all data on the demands of the items are known, the value of a can be computed
exactly. In this case if the bounds are satisfactory we may want to solve (4P) to reduce the computa-
tional requirements. However, most likely, in practical settings the d,,’s are not known exactly and a
can not be calculated. Proposition 2.8 can still be very useful in these occasions because the value of g
depends only on the maximum relative absolute deviation of the demands of the items and of the fam-
ily. and managers are often able to estimate bounds for such a value. An important by-product of Pro-
position 2.8 is the qualitative insight it provides for aggregating items in diagnostic studies of the nature
discussed in this paper.
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Finally, we point out that (2.18) and (2.22) hold if zi,,, is replaced by an upper bound. The same
is true with (2.16) with respect to z},,,. Also, if it is assumed that the demand of item i has no trend,
a, can be seen as the maximum absolute value of the relative difference between the seasonal factors of
the item and the seasonal factors of the family.

3. SINGLE PERIOD STOCHASTIC DEMAND

In this section we address the following problem: Given a family of N items with single period
stochastic demands, determine upper and lower bounds on the maximum deviation between replenish-
ing the items individually and as an aggregate family.

The following conditions below are assumed to hold throughout this section:

(i)

(ii)

(iii)

The interval of time with nonzero demand is the same for all items.

The demand of each item is independent of the demand of the other items and is nor-
mally distributed with mean u; and standard deviation o .

The unit under stock and over stock costs are proportional to the value v, of the item and
are written as

over-stock unit cost = co, = ¢yv; i=1,2, ..., N.

under-stock unit cost = cu; = ¢v, i=1.2, ..., N

In order to determine the desired bounds it is necessary to establish the following results.

PROPOSITION 3.1: Consider the problem

N
?=max Y o,

subject to
M
Yo = ol
=1
o, 20 i=1,2 N
Then
z=+No.

PROPOSITION 3.2:

Consider the problem

N
(W) zZ=min Y o,
i=1

subject to
A
2”r2="’2
i
og<ao, <0 i=1.2,.... N

where we assume that ¢ < 0. When a = & the resolution of (W) is trivial. «?, ¢ and & are known

nonnegative numbers.
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Then,

Z=Nag+ NgF +yKRfal = Ng?— Ng)),

Ngi-g?
N, = | ————,
' [?—z;l
2

where

and
N2=N—N|_‘y.

[x] and [xJ denote, respectively, the largest integer less or equal than x and the smallest integer greater
or equal than x.

PROOF: Problem ( W) can be written as
N
Z=min Y} N
i=1

subject to

y+s=5 i=12 ....N
y1_11=22 i=],2.....N
yi.sio t, 20 i=12 ..., N

The objective function is strictly concave and the feasible set is compact. Hence, there is a
unique optimal solution which is an extreme point of F, the feasible set of (¥').

Every extreme point of F has 2N + 1 basic variables. Assume that y,; and v,; are in the open
interval (g2, 2. Then, the corresponding slacks s,,. 5,5, f;; and 1, are strictly positive. We are left
with 2N + 1 — 6 = 2(N — 2) — 1 variables in the basis. The remaining 2(N — 2) bounding constraints
must have each at least one variable in the basis. However, this is impossible since we are left with
2(N = 2) — 1 basic variables. Consequently, al most, one variable y, can be in the open interval
(gz, %) for each extreme point of F. Thus, at every extreme point of F, v, = g_2 or ¥, = a? for all
except at most one i. Therefore, the minimum cost s,?lution will have as many variables equal to o? as

possible while still satisfying the knapsack constraint 2 v=0cl

=1
The optimal value of (N) is of the form
N| components equal to o2,
N, components equal to &% and
y components in the open interval (g2, )

where N, N, are nonnegative integers, vy is either zero or one, and N = N, + N, + y.

From the knapsack constraint it follows that

Nial+ N2¢'1'_2 + y7 = o?
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where 7 € (a?. %), Thus,
Nia? + (N, + )5t 2 o
Nig?+ (N = N7t = o
and

N&? - o?

(3.1) N, € 4

Fl-g
Z can be writien as

= ng + Nza + YT.

Consequently, N, should be as large as possible in the optimal solution. From (3.1),

NGl — ol
N, = ’_62—02-"
2—N1(7'2

Note that if (-T——Tf; is integer then y = 0. Otherwise y = 1. Therefore,
a

ol - Nig? O'Z—lez
Y= — - — d.
o a

and let { be a normally distributed random variable with mean zero and standard

Let k =

Cy + Ca
deviation equal to one. Denote by {, the value of { such that

Prob(C < C/‘) = k.

It is well known [6] that the optimal lot size for item iis
(3.2) Qr=pu, + o).

The total under-stock and over-stock cost for item i is
(3.3) TC, = co,(Q* — u,) + (co; + cu) o,G(L})
where

GO =, & -0

and f(+) is the normal probability density function [6].

Substituting (3.2} in (3.3)

TC, = col o, + (co, + cu)or,G,) = leyly + (e + )G vo,.

The total cost of under-stock and over-stock for all items if each is ordered separately is

N N
TC =Y 7C = ey + (e + ) GQI T v,
=1

=1

Let
M= c i, + ey + ) GL).
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Hence,

N
(3.4) TC = MY v,

i=1

‘Assume th/ev N items are a%gregated in a single product with parameters co = ¢ v, ¢ = ¢V,
v = Z Vi, b= zp.,. and o= Z a}. The demand of the aggregate product, or, equivalently, the
=1 i=1 i=1

family, is single period and is normally distributed with mean x and standard deviation o .

The optimal ordering quantity and cost for the family are

Q; =u + {0
and
TC, = M vo.
N
Note that TC4 would be equal to 7C is o was equal to ¥ o,.
i=1
We propose to use as an approximation for 7C the value 7C, defined as
1
TC, = TC, ﬁ - MvaN 2
The quality of the approximation can be measured by the following relative error
_1 N
MvoeN 1 - M Y vio;
C, ~ TC s S N vo
(3. = = : =1- —L.
S) A c, 1 1-JN -21 -

MveN

Given a finite sequence {x;]; let ¥ and x denote, respectively, max;{x;}; and min,(x,},. Define

NV Ny No VNa
a|=——,a2=~——,ﬁ‘=\/_;a, ol

B,=

Note that a, is the quotient of the maximum and average unit value of the N items. Similar
interpretations hold for the other parameters. Moreover,

(3.6) a) =1, a, <1, ﬁl 21, ﬂz < L
From (3.5),
il V.o, Nv & a, &
A=1~JN >1- -1~
VR R S A

and by Proposition 3.1,

a
3.7 >l —— VNg=1-
A2l s No =1~ a,.
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‘E\ From (3.5)
b N =
3 (3.8) A=1—JNZV’“’>1—‘/N"=1—[3,.
var o

.
3

Upper bounds on the value of A can also be derived from (3.5):

N vo VNo
(3.9) A=1-JN L gl- = =1 -
4 VN ,_Zl vo ! o b= 8.
Similarly,
N A
N Z"l ZO’,
A=]—\/Nzwol<]—ﬂ"l =1-2g I
=] vo v a 2 /’VO’ )

By Proposition 3.2,

(3.10) A< 1- azTNE—.
a

The next proposition summarizes the results obtained.

PROPOSITION 3.3: The following bounds hold for
C, - TC

A=
TC,

() 1-—a, SAS - a7

VN o
2 1-8 <A< 1-8,

The bounds on A depend on the extremal parameters of the items and the family parameters.
These can be estimated with greater accuracy and less cost than the items parameters. Moreover, (1)
and (2) in Proposition 3.3 hold with a,, a,, B8, B, replaced by respective bounds. Therefore, the com-

putation of TC, may play a very useful role in the diagnostic analysis of a family of items with single
period stochastic demands.

4. CONCLUSIONS AND TOPICS FOR FUTURE RESEARCH

In this paper we have developed diagnostic models for a limited class of inventory-control prob-
lems. We have shown the effect of different aggregation schemes and their power to estimate the per-
formance to be expected from the implementation of a recommended system. Upper and lower bounds
were provided for that purpose.

A very important part of a diagnostic analysis is the evaluation of the performance of different
inventory-control algorithms. We limited our analysis to consider two basic situations: a case where the
items of the system share a common setup, and a case where the products have single-season-
independent demands. In those situations, the following diagnostic-analysis scheme is suggested:

—Group the items into families according to some specific rules depending on the particularities
of the products. Proposition 2.6 proved that similar seasonal behavior gives optimal aggregate
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schedules for items sharing a set up. Proposition 3.3 proved that, for the single period case, either
same item values or same standard deviation of the item demands also yield optimal aggregate models.

—Compute aggregate information on the critical parameters used to describe inventory perfor-
mance.

—Solve the aggregate models, and compute lower and upper bounds for the optimal value of the
total inventory cost.

—The bounds provide a range within which the inventory cost will reside if the decision rules
being considered would be implemented to the actual inventory system. Thus, we have obtained a first
approximation to assess the benefits to be derived from the application of those decision rules.

We believe that diagnostic analyses are important practical tools. The have been neglected in the
literature and a great deal of work remains to be done to determine effective diagnostic methodologies
not only for inventory systems but also for logistics problems in general. Within inventory-control sys-
tems the next natural step is to develop diagnostic models to study items that do not share the same
setup, items subject to quantity discounts, items subject to inventory constraints and other cases cited
in the taxonomies provided by Silver [7], Nahmias [S], and Aggarwal [1]. Production planning and dis-
tribution systems are other areas for potential development of diagnostic models. The need for such
methods should also motivate researchers to explore the concepts of aggregation and heuristics not only
under the view point of computational complexity but also to prevent the massive data collection and
processing that would make diagnostic studies prohibitive.
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PRODUCTION PLANNING FOR MULTI-RESOURCE NETWORK SYSTEMS*

Robert C. Leachman

University of California, Berkeley
Berkeley, California

ABSTRACT

Production planning for large-scale production systems requirtng the alloca-
tion of numerous resources is considered. It is demonstrated how the dynamic
aclivity analysis developed by Shephard leads to lincar programming solutions
of production planning problems. Three types of planning problems are formu-
lated: maximization of output levels for a given time horizon: minimization of
production duration for given output histories. and minimization of production
costs for given output histories.

1. INTRODUCTION

Previous efforts (von Lanzenauer [4] and Candea [1]} to mathematically model capacitated. mul-
tistage production systems have been motivated by manufacturing shop environments. in which many
products are to be produced using a given network of facilities.? The problem considered 1s to deter-
mine workforce levels and product lot sizes in each time period so as to minimize costs to meet exter-
nal demand schedules [1] [4].

The focus of this paper is planning for production systems in which the production network ele-
ments are dedicated 10 producing a single product, but allocation of numerous resources among the cle-
ments is required, and other kinds of production planning problems are posed. Shephard. Al-Avat and
Leachman [7], and Shephard and Al-Ayat {8] have developed a continuous flow dynamic activity
analysis model of production, in which a network of activities characterizes the component tasks of pro-
duction. Required facilities and other resources are considered as inputs to be allocated among the
activities. The presentation in [8] is taken as an appropriate point of departure here. In the tfollowing.
this model is extended to include inventory capacities as in [4], initial inventories of intermediate pro-
ducts, and classes of exogenous inputs.

Three types of production planning problems are formulated and solved using linear programming
methods. The problem types considered are maximization of output accumulations by a given horizon.
minimization of production duration for required output histories; and minimization of costs for given
outputl requirements.

2. THE MODEL

Following Shephard and Al-Ayat [8]. the production system is viewed as a network of production
activities which are denoted by A4,, 4,. ... . Ay. In the network, nodes represent activities and arcs

*This research was supported by the Office of Naval Research under Contract N000O14-76-C-0134 with the Uninversity of Califor-
nia

*No attempt is made here to reference multistage modeling efforts of uncapacitated systems or pure serial or parallel structures.
for a survey of such efforts, see Candea [1]
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indicate intermediate product transfers, i.e., the use of each activity’s output as input by other activities.
The operation of each activity A, is measured in terms of an intensity function z,(s), =10, 1, 2, .. .
whose value at time r indicates activity input during [¢, r + 1) and output at time (1 + 1) when taken
with technical coefficients defined as follows:

(@ ¢, 1=0,1,2 ...,i=1, ..., N, where ¢;,(1) is the amount of output of activity A,
at time ¢ per unit intensity of activity A4,.

®) a;(0), t=0,1,2, ..., k=1,2,..., NK, i=1, ..., N, where a, (1) is the amount of
exogenous input type k required at time r per unit intensity of activity 4,. The first
NS £ NK inputs are designated nonstorable resources which cannot be accumulated: the
remaining exogenous inputs can be accumulated, and are termed storable resources.

) a,(), 1=0,1,2 ...,i=1, ..., N, j=1, ..., N, where a,(1) is the amount of inter-
mediate product from activity 4, required at time r per unit intensity of operating A,.

For a time horizon T for production activity, we introduce the following technical limitations on
the system:

(@ (S} 124 T-1 the activity intensity bounds. natural bounds resulting from available
workspace and other limitations not considered as exogenous input.

() (X ()}24 "2 ¢ 71, the time histories of nonstorable resource levels available for input
to the system;

(© {Y(0);z%&4 1 T-lk. the time histories of storable resources made available to the sys-
tem, where

4
2 y/\‘ (T)
T=0
is the cumulative amount of resource k supplied during {0, 1)

(d) {inv®,_, . the initial inventories of activity product for intermediate uses: and

e) {cap,(n)}/z2! 5 T, the bounds on accumulations of activity product awaiting intermedi-
ate uses, arising from limited storage capacity for in-process inventories.

For our purposes here, the intensity z,{¢) of activity A,, i=1, ..., N, on each time interval
[r.t+1),¢=0,1,2, ..., T—1, shall be partitioned into effort producing intermediate product. =/(r).
and effort producing final product, z/(1), where
() ) + () = 7,(1).

These variables indicate the allocation of activity output produced during [, 1~ 1) to final and inter-
mediate uses.

A production plan is a specification over some finite period [0, 7) of the activity intensities

(), Foy)=p I

Such a plan is said to be feasible fior L (T) if the plan belongs to the set L(T) defined by the following
inequalities:
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L(T)1. i‘l’a,k(r)[z,’(r) +:FV < ), k=1, ..., NS 1=0,1, ..., T—1.
L(T)2. z’;} )\: ai (1) [217) + )] € 20 Yolr), k= NS+ 1, ..., NK
=0 =1 T=
t=0, ..., T—1.
L(T)3. }':' }E a,(r) /() + /()] - I_zl ¢lr + D:z/(r) < inv),
=1 i=1 =0
J=1L ..., Nt=1,...,T-=1, and
i @, (0 [/(0) + :HO)) < inv?, =1, ..., N
=1
L(T)4. 'i“; ot + Dzl(r) - i‘} i a, (0)lzlz) + 2H7)) < cap, (1) — inv),
r= r=1 j=]
j=1 ..., Nt=1..,T-1, and
- ic‘z,,(O) [/(0) + :F(0)] < cap,(0) —inv?, j=1, ..., N
L(T)s. )+ () <z(0), j=1, ..., Nt=0, ..., T~1,
F), )20 5=1,... . Nt=0, ..., T—1

Constraints L{T)1 and L(T)2 express resource limitations. Constraints L{T)3 insure adequate
intermediate product transfers occur to support production activity, while constraints L(T)4 insure that
inventories of intermediate products do not exceed capacities. Finally, constraints L(T)5 limit intensi-
ties to nonnegative values less than intensity bounds.

The set of linear inequalities L(T) constitutes a continuous flow model of production, in which
any positive intensity of activity operation supplies completed product to final or intermediate uses. or
to inventory. In the case that intermediate products of a system are large, discrete units, precedence
relations occur between activities output unit by output unit, and constraints L{T)3 and L(T)4 must be
modified. This case will not be treated here, and the reader is referred to [6], in which a dynamic
activity analysis was developed on a critical path analysis network.

In the case more than one activity produces a certain product, constraints L(T)3 and L(T)4 must
be modified for the activities in question. See [6] and [8]. However, with such revisions L(T) still
constitutes a set of linear inequalities. For simplicity of exposition, we assume in what follows that no
two activities produce the same product.

3. PRODUCTION PROGRAMMING
3.1. Output Maximization

In this section, programs are formulated for the maximization of value or mix functions of final
output accumulations. We consider first the case where a specific product mix of final output is

desired, and the problem is to maximize the scale of this mix accumulated by a time horizon T.

Let 2y . be a variable indexing the scale of the accumulation by time 7. The amounts of the vari-
ous products will be related by coefficients

5,_\4. i=1 ..., N
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where a; p+) Za +) is the amount of final product from aclivity 4, accumulated. The problem in question
is formulated as a linear program as follows:

Maximize Zn 41

subject to

7-1
ol. a,'/\\*,lzl\,,‘ S 2 C,(' + I)Z,’(l). i= l, e N.
=0

02. {Z/(0), 2HOYZY 7 e (),
03. Zp 41 2 0.

In general, the program involves [S(N) + NKJ(T) + N + 1 variables, and [3(N) + NKI(T) + N
constraints. Clearly, the time horizon (i.e., the number of time periods) is the most sensitive factor in
terms of problem size which can be handled. The structure of the constraint set can be modified by
rewriting constraints L(T)3 and L(T)4 in terms of intermediate product inventory variables

linv/(n}, r=0, ..., T—-1,

which are the slack variables defined by constraints L(T)3. Using these variables, we reformulate con-
straints L(T)3 and L (T)4 as follows:

L(T)3. ifa,,(:)[:,’(:) +2H 1 = (2 = 1) —inv/ = D) +invi() = 0,
j=1 ..., Nt=1 ..., T—-1, and
\I a,(0)[z/0) + zF(O] + inv/(0) =inv?. j=1, ... N
L(T)4. inv/(1) <cap, (1), j=1,..., N =0, ..., T-1

With this revision, it is evident that the constraints L(T)1, L(T)4 and L(T)5 apply only time
period by time period, and the constraint matrix exhibits partial block diagonal structure. Potential is
thus offered for application of large-scale programming procedures such as decomposition. (See {5].)

We next consider the case where the value of output produced is to be maximized. We suppose
each product i has a constant unit price p,. The maximum value of output accumulated from produc-
tion activity during {0, 7) is then given by the optimum of the following linear program.

-1 A
Maximize Y 3 pele + DM

=0 i=1
Subject to (20, 21Vt Ve L(T).

The remarks about problem size and structure concerning the previous program apply here as well, as
only the product mix variable and the N constraints O have been deleted.

3.2. Time Minimization
In this kind of planning problem, there are final output demands which must be met, but the

overall production duration is to be minimized. Final output demands are expressed in cumulative
terms as follows. Let

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 29. NO. 1. MARCH 1982




PRODUCTION PLANNING FOR MULTI-RESOURCE NETWORK SYSTEMS 51

Ui, t=1,2, ....T i=1...., N,

denote the required cumulative delivery of final product i by time 1 Here, we are considering the situa-
tion where early delivery of final products is acceptable or even desirable. These demands imply con-
straints

=1 ~
(2) Y r+DH@ 2 U0, i=1, ... Nt=1 ..., T
=0

We first consider the problem of finding the latest starting time for production activity sufficient to
satisfy (2). A feasible production plan for this problem would satisfy the linear inequalities (2} and
L(T). An optimal plan would have the characteristic that

3) 2(0) = 2(1) = z(D = ---=z(1x)) =0, i=1, ..., N,
where ¢ is as large as possible. Such a plan may be found (if one exists) by solving a sequence of
Phase | linear programs (see {2]) as follows.
The set of inequalities under consideration is of the form
4) Az +Bx =}
z20,x 20

where
z=(z{(0), z{(0), ....24(0), 2£(0), 2} (1), 2 (1), .... (), ZE (1), ...,
2(T=1),2{(T=1D), ..., 2 (T~1), 2(T-1));
X = (x5, ..., Xpin)s

m = (NY(T). n=(NK)(T) + 3(N)(T), I =2(N)(T),

A is the {(m + n) x [ matrix of coefficients of activity intensities in (2) and L(T), where the first
m rows arise from (2);

B isthe (m+ n) x (m+ n) matrix of coefficients of slack variables for said constraints; and
b is the (m + n) vector of right hand side constant terms of the constraints.
For the inequalities organized in this fashion, the solution algorithm is presented below:
STEP 0: Initialize r = T — 1.

STEP 1: Solve the Phase | problem with the first (N)(7) columns of the tableau corresponding to
(4) deleted. If a feasible solution is found, stop; then

{zite), 2Hy iz 3!
is an optimal production plan. If the problem is infeasible, go to Step 2.

STEP 2. If r = 0, stop: then the set of inequalities is infeasible. Otherwise, decrease 7 to 7 — 1
and go to Step 1.

The aigorithm is seen to initially ignore all columns in the tableau corresponding to activity inten-
sities in periods before time (7 — 1), and to then attempt to find a basic solution. If none can be
found, columns corresponding to
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HT=-2), HT-2), i=1,..., N,

are also considered. The algorithm continues to allow the use of columns corresponding to activity
operation one time period before the earliest period of activity operations allowed by the previous itera-
tion. The algorithm terminates either the first time a feasible basic solution is found, or else all
columns are adjoined without finding one. In the former case, an optimal production plan is found, and
in the latter case, the output schedule (2) is infeasible for the limitations L (T).

We next consider the problem of finding the earliest time all product accumulations can be com-
pleted. It is immediately apparent that an approach similar to that considered above can be used to
solve this problem. A sequence of Phase I procedures is again suggested, but in this case starting with
the possibility of positive activity intensities only during [0, 1), and proceeding forwards in time. Later
production activity is allowed period by period until either a feasible basic solution is found for the first
time, or else the horizon is reached without finding one. In the former case, an optimal production
plan is obtained, and in the latter case, the output schedule is infeasible for the limitations imposed.

3.3. Cost Minimization

In this section we formulate the problem of determining a minimum cost production plan which
meets a given final output schedule expressed in the form of (2).

Nonstorable resources are assumed to have capacity costs corresponding to the peuk demands for
each such resource. These resources cannot be accumulated, so that the production system must have
the capability to accommodate peak loads. Storable resources, however, have prices, these resources
account for the variable cost of production activity. It is assumed that storable resources can be pro-
cured as required, so that inventories of same are ignored. We assume intermediate product inven-
tories also have capacity costs, corresponding (0 peak storage requirements. These inventories will also
bear holding costs representing opportunity charges for unproductive capital.

Assuming linear capacity costs, the problem is formulated as a linear program as follows. Let
C(1) = (G} (1), ..., C¥(1)),

be the vector of costs per unit capacity for nonstorable resources maintained during [r. 1+ 1): let

¥y
CHt) = (Cygy (1), ..., CL()),
be the price vector for storabie resources procured for use during [r, 1+ 1); let
Cio) = (CGi (), ..., Cyle)),

be the vector of costs per unit storage capacity maintained during [r, ¢+ + 1) for intermediate products:
and let

H([) = (HI(’)' ey H\'(f)).

be the holding costs for intermediate products held during [¢, r +1).

To serve as variables in the minimization, let
X=X, .... Xyg).
denote the peak requirements in any unit time interval of nonstorable resources; let
cap = (cap;, .... capy),
denote the required intermediate product inventory storage capacities; and let
linv/(n), 210y, 2Fo)}izp - I

be the inventory and intensity variables as before.
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PRODUCTION PLANNING FOR MULTI-RESOURCE NETWORK SYSTEMS 53
For given intensity bounds
Eoyed
and initial intermediate product inventories
{inV?},-l, LN

the minimum cost production plan meeting the output schedule (2) is given by the optimum of the
linear program

T-1 -1 NK N ]
Minimize ¥ C()-X+ ¥ ¥ ¥ Qa)lz/(0) + :f(0)]
=0 =0 k=NS+] /=1
-1 -1 N
+ ¥ C1) - cap + ¥ H(1) inv/()
=0 1=0 =]
subject to
-1 . ~
Cl. z olr+Dzf(5) 2 UAr), i=1. ..., N =1, ..., T
r=0
N )
C2. h3 ap (D Z1) +2f()]1~ X, €0, k=1, ..., NS, 1=0.1, ..., T—1.
1=
v
C3. 3 3,0 ) + 2f(O] ~ ¢, ():/G~ 1) —inv/(t = 1) +inv/(1) = 0.
=1
J=1 ... N=1 .., T-1, and
N )
Y 2,0 [5/(0) + zH(0)] +inv/(0) = inv?, i=1, ... N
=1
C4. inv/(1) —cap, (1) €0, j=1, ... N =0, ..., 1—1.
Cs. o+ M0 <30, j=1, ... N =0, .... T-1
C6. X=X, ..., Xyg) 20,
cap = (cap;, ..., capy) = 0,
inv/(1) = Ginv{ (1), ..., invf()) 20, t=0, ..., T—-1
), 20 5=1,... N 1=0,.... T-1

Here constraints C2 define the required nonstorable resource capacities, and constraints C4 define
the required intermediate product storage capacities. Constraints C3 and CS5 deal with inventory bal-
ance and intensity bounds in the same manner as the treatment of output maximization problems.
while constraints C1 repeat (2).

In general, the program includes (4N + NS) (T +1) variables and (4N + NS) (T) constraints.
As before, the fineness of the time grid is the most sensitive factor in terms of the problem size which
can in practice be solved. A bordered angular configuration for the constraint matrix is now displaved.
in which constraints C2, C4, and C5 exhibit a block diagonal structure with coupling variables.
Although this is a more difficult structure than that for the output maximization problems. nonetheless
it can be exploited. See [S].

As an alternative to the constant capacities for each nonstorable resource defined by constraints
C2, one may allow capacities to be adjusted from time period to time period according to linear costs.
Many authors have formulated labor workforce levels in this fashion, allowing hiring and firing in each
period. See for example [3] or [4]. Such formulations may be integrated here as appropriate.
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THE CLASS OF MIFRA LIFETIMES AND
ITS RELATION TO OTHER CLASSES*

Henry W, Block and Thomas H. Savits
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ABSTRACT

In a previous paper. the authors have introduced a class of multivariate life-
times (MIFRA) which generalize the univariale lifetimes with increasing failure
rate average (IFRA). They have also shown that this class satisfies many fun-
damental properties. In this paper it is shown thai other concepts of multivari-
ate IFRA do not satisfy all of these properties. Relationships between MIFRA
and these other concepts are given. Finally. positive dependence implications
with respect to these classes are also discussed.

1. INTRODUCTION

The class of univariate lifetimes with increasing failure rate average (IFRA) has been of great
importance in reliability theory. The importance of the class. and properties thereof. are discussed in
the text of Barlow and Proschan [1] whose notation and terminology are followed here. A recent
development with respect to this class has been the resolution, by Block and Savits [2]. of a long stand-
ing problem concerning the closure of this class under convolution.

Several recent papers by Block and Savits [3. 4], and by Esary and Marshall [6]. have proposed
various multivariate extensions of this univariate class. It is our purpose in the present paper 1o give
the relations among these various concepts and to show that one of these concepts. which was desig-
nated MIFRA in Block and Savits [3]. is preferable to others. This will be done by showing that among
these various extensions only the MIFRA class of distribution satisfies all of the properties which one
would reasonably expect for a class of multivariate IFRA distributions. Furthermore, dependence pro-
perties and the lack thereof for those classes are also discussed.

One deviation which we shall make from the notation of Barlow and Proschan (1] is to call a
structure function & (x) monotone if it is increasing in its components and in addition ¢(0) = 0 and
& (1) = 1. Esary and Marshall [5] have called such a function coherent. We conform to the terminol-
ogy of Barlow and Proschan [1], and call a structure function coficrenr (called fully coherent by Esary
and Marshall) if it is increasing in its arguments and if all components are essential. The life function =
corresponding (o a system & is called monotone (coherent) if ¢ is monotone (coherent). See Esarv and
Marshali [S] for a discussion of life functions.

2. MULTIVARIATE IFRA

Block and Savits [3] have introduced a concept of multivariate IFRA which is given in the follow-
ing definition.

“This research was supported by ONR Contract NOOOT4-76-C-0839 and by NSF Grant MCS77.01458
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56 H. W. BLOCK AND T. H. SAVITS

DEFINITION 1. Let T = (T, ..., T,) be a nonnegative random vector. The vector T is said
to be MIFRA iff

Ec (D) < Elne(T/a)]

for all continuous nonnegative increasing functions fand all 0 < o < 1.

The above definition can be better appreciated by first examining a special case. If we let
h(T) = 1,(T) where 4 = (1), %) x (5, %) x ... x (f,, o) and [/ is the indicator function of the set
A (ie. 1,(T) =1 € T € A4), the defining condition reduces to F*(1) < Flar) forall 0 < & < 1
and all 0 < t where F(¢) = P(T > t). This is a simple multivariate analog of the usual univariate
definition of IFRA (see Remark on p. 84 of [1]) and is given in 4 below. Furthermore, monotone sys-

tems have lifetimes of the form 7,(T) = max min 7, and 7,(T) = min max 7, where P, are min
IS/<p i€P, - IS/Sk i€k,

path sets and the K; min cut sets. These functions have the property that r(aT) = a7 (I) for every
0 € a £ 1 and are called homogeneous functions. Marshall and Shaked [8] have pointed out that
Definition 1 is equivalent to g(7) being IFRA for every increasing homogeneous function g This
implies that if Tis MIFRA then every monotone system formed using 7 is IFRA.

Several other possible conditions for multivariate IFRA have been proposed.

_ DEFINITION 2. Let T =(T), ..., T,) be a nonnegative random vector with survival function
F(1) = P(T > 1). The vector T is said to satisfy condition / if the condition following i is satisfied
wherei=A4, B, C, L, D, E, or F.

A: F (1) < Flag) forall0 < o < land all0 € 1.

B : T is such that each monotone system formed from 7 is univariate IFRA.

C : T is such that there exist independent IFRA random variables X,, ..., X, and monotone
life functions7,, i=1, ..., msuchthat T,=7.(X, ..., XJ)fori=1 .... m
X: T is such that there exist independent IFRA random variables X,, ..., X, and nonempty
sets S, of {1, ..., k}suchthat T,= ¥ X, fori=1 ..., m
JES, .
D : T is such that there exist independent IFRA random variables X, ... . X, and nonempty
subsets S, of {1, .... k} such that T, = min X, fori=1 ....m
/€S,
E : Tis such that the minimum of any subfamily of 7, ..., T,, is IFRA.
F. Tissuch that min a, 7, is IFRA forallg, 2 0,i=1, ..., m.

Conditions A4, B, C, D, E, Fhave been given by Esary and Marshall [6] and condition £ was given
by Block and Savits [4].
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3. RELATIONSHIPS AMONG THE CONDITIONS

The following relationships hold between MIFRA and the seven conditions given in Section 2.

7

MIFRA

/7 N

A=)F B
N4
E

FiIGURE 1. Relationships among
the conditions

With the exception of the implication L => C, the above figure is complete, i.e. no more implica-
tions are possible. It is not known where L => C holds, but we conjecture that it does not. Proofs of
the remaining implications and counterexamples will now be given.

Because of results in Esary and Marshall [6] we need only show how MIFRA and £ compare with
concepts 4, B, C, D, E and with each other.

3.1 Comparison of MIFRA with Other Conditions
a. C => MIFRA. This follows from (iii) of Theorem 4.1 of Block and Savits [3].
b. I => MIFRA. See (iv) of Theorem 4.1, (3].
c. MIFRA => F. Apply (P1) and (P5) of Theorem 2.3, [3].
d. MIFRA => B. This is (P1) of Theorem 2.3, [3).
e. MIFRA # X. Given in Example 3.3 of Block and Savits [4].

f. MIFRA # C. _(and MIFRA #» D). Example 3.2, [4].

g. A # MIFRA. Since 4 & 8.
h. B # MIFRA. Since B # A.
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3.2 Comparison of X with Other Conditions
a. D+ X  Example 3.3 of Block and Savits [4].
b. C# X SinceD % X.
¢. T# D Let X, X, X; be uabsolutely continuous IFRA random variables. Form
Yi= X, + X;and Y, = X, + X;. By definition (). },} satisfies £, but by Section 10 of
Esary and Marshall [6] (¥,, },) does nol satisfy D.
All other counterexamples and implications, with the exception of T => (', follow from the above.

4. PROPERTIES RELEVANT TO MULTIVARIATE IFRA DISTRIBUTIONS

The class C of MIFRA distributions has been shown by Block and Savits [3] to satisfy the follow-
ing properties:

(Property 1): Closure under the formation of monotone systems, i.e. if (r,, ..., T,) € Cand
Ty. .... T, are monotone life functions, then (+ (T}, ..., T,). ..., 7.(T, ..., T,)) € C.

(Property 2): Closure under limits in distribution.

(Property 3): Marginals are in the same class.

(Property 4): Closure under conjunction of independent sets of lifetimes, ie. if (T}, .... T,)
and (S, ..., S,,) € Cand are independent, then (T, ..., T,.S,. .... S,) € C.

(Property 5): Closure under scaling, i.e. if (T, ..., T,) € Cand a,. i =1, ..., n, are nonnega-
tive constants, then (a\T), ..., a,T,) € C.

(Property 6): C is closed under well defined convolution, ie. if (T, ..., T,) € C and
(S,. .... S,) € Cand independent, then (T, + S§,, .... T, +§,) € C.

It is reasonable that any class of multivariate IFRA distributions should satisfy these conditions.
Block and Savits [3] have shown that the MIFRA distributions satisfy these conditions. We will now
show that each of the conditions 4, B, C, X, D, E, F fails to satisfy at least one of these properties.

4.1 A Does Not Satisfy Property 1.
This follows since 4 & B.
4.2 BDoes Not Satisfy Property 5.

This follows since B %5 A.

4.3 C(and D) Do Not Satisfy Property 5.

Let (T\. Ty)) = (min(X, Z), min(Y, Z)) where X, Y and Z are independent exponential random
variables with mean one. For a; # ay, assume (a\ Ty, a,7;) = (-1 (X, ..., X)), ry(X. ... X))
where 7|, 7, are monotone life functions and X,, ..., X, are independent IFRA lifetimes. It follows
from Remark 2.2a of Block and Savits (4] that there exist independent exponential random variables U,

V. W osuch that (a, T, @, T;) = (mintU, W), min (}, W)). But the conditions 0 = P(aT| = a,T,)
and P(min(U, W) = min(V, W)) > 0 are not compatible.
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4.4 I Does Not Satisfy Property 1.

Let X snd Y be independent exponential lifetimes. Define 7,(X, }Y) = min(X, }) and
75(X, ¥) = Y and assume that (r|, r3) = (U + W, V' + W) where U, V, and W are independent
IFRA lifetimes. Now by Theorem 2.8 of Block and Savits [4], one of V and W is exponential and one
is concentrated at 0. If W is exponential since P(min(X, ¥) € Y) =1, it follows that P(LU' = 0) = |
and so P{min{X, Y} = V) =1 which is impossible if X and } are independent exponentials. If I is
exponential, then P(W = 0) = | so that min(X, Y) and Y are independent, again an impossibility.

4.5 D Does Not Satisfy Property 6.
Let X, ¥, and Z be independent absolutely continuous IFRA lifetimes. Then both (X, }) and

(Z, Z) are trivially in D. However, if (X, Y)+ (Z, Z)= (X + Z Y + Z) was in D. then by Section
10 of Esary and Marshall [6] X + Z and }' + Z would be independent, but they can't be.

4.6 E Does Not Satisfy Property 1.
This follows since £ # B.

4.7 FDoes Not Satisfy Property 1.
This follows since 4 < F.

5. POSITIVE DEPENDENCE

The first published definition of a class of multivariate nonparametric reliability distributions was
Harris® [7] definition for multivariate increasing hazard rate. This definition included a type of positive
dependence (i.e. right corner set increasing). See Barlow and Proschan [1] for a discussion of various
types of positive dependence. Subsequent definitions have not included such assumptions. The opin-
ion which is now generally held is that the various concepts of positive dependence are not intimately
related to useful definitions for nonparametric multivariate life classes. In other words, if a multivariate
lifetime has an increasing failure rate or failure rate average, then it need not follow that the lifetime be
positively dependent in some sense. In fact, if such a definition implies positive dependence, then it 1s
probably too strong. Examples of such definitions are conditions €, D and X which are easily shown to
imply association. We will show that the more useful definitions 4 (= F), B, £ and especially MIFRA
do not imply even positive quadrant dependence, which is one of the weaker types of positive depen-
dence.

S$.1 Aand E + Positive Quadrant Dependence

Clearly. F(r. 1)) = P(T, > 1,, T, > 1) = exp{—1,—1,—1,1y) satisfies 4 and E. bul Fr. 1)) <
PAT, > 1)P(T, > 1)),

5.2 MIFRA and B + Positive Quadrant Dependence

_ Consider (T, T;) = (U, 1 — U) where Uis a uniform distribution on the unit interval. Clearly,
FQry, 1)) < P(T, > 1DP(T, > 1y), but Ty, Ty, min(7T,, T,) and max(7,, 7,) have a univariate uni-
form distribution and so are IFRA. Thus, B is satisfied. Furthermore, Theorem 3.5 of Block and Sav-
its [3) gives that (T,, T,) is MIFRA if the indicator function of every fundamental upper domain in
R, satisfies the inequality of Definition 1. A set A4 is a fundamental upper domain if it has the form in
Figure 2 below where 0 € x; £ x, € ... < x,andy, 2 vy, 2 ... 2 v, 2 0. From Figure 2,
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Yar

Yn -

FIGURE 2. Fundamental upper domain

Wr, mpeal=JIn>x >0 = Jlh<U<i-y)

=1 =1
and

(Tya, Tya) € Al = (J fax, < U < 1 ~ay,).

1=

Let/=liix +y < W, J={jiax +ay < 1}. Since0 <a <1,/ CJ Then
EUAT, TPl=P [U x, < U< 1—_»»,}]

1€/
and
EVelI3(T)Ja, Tya)) = PYe lulax,- <U<1- ay,-}]
i€l
2 Ple [U fax, < U <1~ a\v,}].
i€l
By renumbering, if necessary, we may assume without foss of generality that / = {1, 2, ..., p}. Now
define K=12< k<Spax, 21 —ay =1k <ky<..< k}andset kg=1and k,, =p+ 1.
Then
r+1
U ‘QX, <U<1- ay,l = U (axkl_, < U< l~ayk’_‘l
i€f j=]
and these latter sets are disjoint intervals. It follows from Minkowski’s inequality for 0 < a < 1 that
r+t Va
P”“[LGJI fax, < U <1 —ayll= 12’ P{axkl_l < U<l —aykl_l}
r+l Y
‘ > ,2l P “{axk,_‘ <U<1i-~ kal_|l.
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Since
r+l
Ik <U<1-y}= x, <U<1-yl
3 i€ =1 & Si<hk -1
it suffices to show thatfor/ =1, ..., r + 1
P U v, < U< 1T-y}] <PV {ax,\/ < U< 1-ay, .
kp (Sish-d

But the union on the left hand side is contained in the interval {x,(,_l < U<l _)’k,—l} and
Xt Ve < 1 since for k_, < i< k-1, i€/l And so we are done if we show that
11—t € U—anVefor0 <t <1,0 < a € 1. This last inequality is, however, easily verified. ]
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REMARKS ON A UNIVARIATE SHOCK MODEL
WITH SOME BIVARIATE GENERALIZATIONS

William S. Griffith

University of Kentucky
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Lexingron, Kentucky

ABSTRACT

In a 1973 paper J. D. Esary, A. W. Marshall, and F. Proschan [S] con-
sidered a shock model giving rise 1o various nonparametric classes of life distri-
butions of interest in reliability theory. A number of authors have extended
these results in a variety of directions. In this paper, alternative proofs of the
increasing failure rate (IFR) and decreasing mean residual life (DMRL) results
are given which do not make use of the theory of total positivity. Some bivari-
ate extensions are then obtained using a shock model similar to that originally
used by H. W. Block, A. S. Paulson, and R. C. Kohberger [2] to unify various
bivariate exponential distributions.

INTRODUCTION

In a 1973 paper, Esary, Marshall, and Proschan [5] investigated a shock model which gives rise to
various nonparametric classes of life distributions which are of interest in reliability theory. We will
begin this paper by reviewing these univariate life distribution classes and then stating the theorem due
to Esary, Marshall, and Proschan. We then provide new proofs to some parts of this theorem. The
proof uses elementary methods rather than results from the theory of total positivity. We will then
describe a bivariate shock model which has been used by Block, Pauison, and Kohberger {2] to unify
some of the various bivariate exponential distributions which have appeared in the reliability literature.
Finally, we will discuss a number of bivariate shock models yielding bivariate ccenditions that can be
viewed as generalizations of the univariate new better than used (NBU) condition.

1. UNIVARIATE LIFE DISTRIBUTION CLASSES

In this section, we will consider various models of stochastic aging. For every model of wearout
(or adverse stochastic aging) there is an analogous model of improvement (or beneficial stochastic
aging). Throughout, we will use the word "increasing” ("decreasing’) to mean "nondecreasing’ (“nonin-
creasing’).

Consider a single component or system with a random lifetime denoted by the random variable T.
We will denote the distribution function of T by F. The survival function, denoted by F, is
Flry=P(T > t)=1- F(r). We will assume throughout that F(0—) = 1 (i.e., that T is a nonnega-
tive random variable). We now define the various nonparametric life distribution classes of interest.

If a life distribution F satisfies
FU+ x)

Fli)
then F is called an increasing failure rate (IFR) distribution.

(.10 is decreasing in —oo < ¢ < oo for fixed x > 0
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A distribution F is called an increasing failure rate average (IFRA) distribution if
(1.2) Flat) 2 P()for0<a <1, 120.

A distribution F is called a new better than used (NBU) distribution if
(1.3) Fix+y) S FX)F()forx 20, y 2 0.

A distribution F with a finite mean u is called a new better than used in expectation (NBUE) dis-
tribution if

(1.4) flw Fx)de < wF() for 1 > 0.

A distribution F with finite mean is called a decreasing mean residual life (DMRL) distribution if
1
F()

(1.5 flm F(x)dx is decreasing in 1.

For eacir of the preccding classes of life distributions, there is a corresponding class which is a
model of beneficial stochastic aging. These are obtained from the preceding classes by replacing
decreasing with increasing, increasing with decreasing, and reversing inequalities. This results in classes
known as the decreasing failure rate (DFR) class, the decreasing failure rate average (DFRA) class. the
new worse than used (NWU) class, the new worse than used in expectation (NWUE) class, and the
increasing mean residual life (IMRL) class. We next discuss some alternate characterizations which
perhaps supply more intuition.

We begin by considering again a random variable 7 with distribution function F denoting the ran-
dom lifelength of some device. For any x 2 0, we will consider the survival function

f(x+t_)

(1.7 F (1) = —=
Fix)

Intuitively, F, represents the survival function of the residual life of the original device condi-
tioned on the fact that it survived past time x. We next prove a lemma and a number of propositions
which give alternate characterizations of most of these classes.

LEMMA 1:

F,=(F),_ fory>2x20

PROOF: Omitted.

PROPOSITION 1: Let u, and u be the means of F, and F. respectively.

(i)  F has an IFR distribution if and only if F,(z) < f_,(:) for all z when x 2 .

(ii) F has an NBU distribution if and only if F,(:) < F(z) for all - when x > 0.

Let u be finite

(iii) Fis a DMRL distribution if and only if o, < u, forx 2 v 2 0.

(iv) Fis an NBUE distribution if and only if u, < u forx 2 0.
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PROOF: Omitted.
PROPOSITION 2:
(i)  Fisan IFR distribution if and only if F, is an NBU distribution for all y.

(ii) Let F have a finite mean. Then F has a DMRL distribution if and only if F, has an
NBUE distribution for all y.

PROOF: The proof of (i) follows directly from Proposition 1(i), Lemma 1, and Proposition 1(ii).
The proof of (ii) follows from Proposition 1(iii), Lemma 1, and Proposition 1(iv).

2, THE EMP SHOCK MODEL AND THEOREM

In this section, we will discuss the Esary, Marshall, and Proschan (EMP} shock mode! and
theorem. We will provide alternate proofs to some of these results and indicate some generalizations.

We begin by defining various nonparametric classes of discrete distributions for positive integer
valued random variables.

Let M be a positive integer valued random variable putting no mass at infinity. Then we shall say
that

(2.1) M is a discrete IFR random variable if (P(M > k)/P(M > k — 1) is decreasing in
k=12 ....
(2.2) M is a discrete IFRA random variable if [P (M > k)}V* is decreasing in k = 1,2, ... .
(2.3) M is a discrete NBU random variable if P(IM > k + j) < P(M > k)P(M > j) for
L k=012 ....
(2.4) M is a discrete NBUE random variable if P(M > k) ¥ P(M > j) 2 ¥ P(M > )
j=0 j=k

for k =0,1,2, ... and M has a finite mean.

(2.5} M is a discrete DMRL random variable if {P(M > k)}™! [2 PM > j)] is decreasing
=
ink=0,1,2, ... and M has a finite mean.

Note that these classes of life distributions are simply discrete analogues of the classes that we
have previously defined in Section [. If we reverse the inequalities and change decreasing to increasing
we can define analogous classes of discrete DFR, DFRA, NWU, NWUE, and IMRL distributions
(except that we do not require M to have a finite mean in the NWUE and IMRL cases).

Next we describe the fundamental shock model discussed by Esary, Marshall, and Proschan.
Consider a device subjected 1o shocks which occur in time as events of a Poisson process with intensity
M. The device fails on the Mth shock where M is a positive integer valued random variable whiﬁh is

independent of the shock process. Letting T be the lifelength of the device, we see that 7 = 2 X,
=1

where the X,’s are independent and identically distributed random variables having an exponential
distribution with parameter A. The survival function is of the form
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F(D=P(T >0 =3 P(S(t)=k)P(M > k)
=0
where {S(r): 1 > 0} is a Poisson Process with intensity A.
We now state the main theorem.
THEOREM 1: (Esary, Marshall, and Proschan):
(i) If M s discrete IFR (DFR), then Fis IFR (DFR)
(ii) If M is discrete IFRA (DFRA), then Fis IFRA (DFRA)
(iii) If M is discrete NBU (NWU), then Fis NBU (NWU)
(iv) If M is discrete NBUE (NWUE), then Fis NBUE (NWUE)
(v) If M is discrete DMRL (IMRL), then Fis DMRL (IMRL).
Elementary proofs of parts (iii) and (iv) were given in Esary, Marshall, and Proschan. The proofs
of the remaining parts required results from the theory of total positivity. We now give proofs of (i)
and {v) which involve elementary methods. We repeat the proof of (iii) to illustrate some techniques
which we will utilize. Furthermore, in the subsequent section, we use the techniques developed to
establish new bivariate results.

PROOF OF THEOREM 1(iii): We note that

Futx) =3 PSG+x) =K PM > k),

k=0

Since {S(s): 1 > O} is assumed to be a Poisson process, we have by the stationary independent incre-
ments property that

- ok
Futx)= 3 T P = APSK) =k — DPM > &+ (k- 2))
k=0 a=0
=3 T P =P =k~ APM > A+ (k- 23)
A=0 k=4
=3 T (P(S() = AP(S(x) = DP(M > & + 1),
A=0 /=D

Applying the discrete NBU condition on M we have that

Fr+x) < 3 T PSO =APS(x) = DPM > APM > 1)
3=0 /=0

oo

=Y PSS =2)PM > 4)
A-0

P(S(x)=DPM > 1]
i=0

Consequently, F(r + x) < F(1)F(x).

PROOF OF THEOREM 1 (i): Consider a random variable T whose life distribution arises from a shock
model in which M is discrete IFR. In order to show that it is IFR It suffices from Proposition 2 that F,
is NBU for all y. However. in light of the preceding proof, we need only show that F, arises from a
shock model in which the random number of shocks survived has a discrete NBU distribution.
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Now
_ 3PSO +u=8)PM > A)
i.(u)=F(Z+u)=A-0
' Fo) T P(SG) = HDP(M > j)
Jj=0

A
Y IPESGY =4 Sw=4a-)PM>j+(4&-)))
A={ j=0

T P(SG) = DPM > ))

J=0

where S,(u) = S(y + u) — S(»)
S 3 P(SG) = HPS,(U) =& — NP > j+ (A - )

_ J=04=)
T P(SG) = DP(M > j)
j=0
it'ui') PSQ)=j)P(S,(u)=K)PM > j+k)

T P(SG) = DP(M > j)

j=0
) T PSG) = NP > j+ &)
T PGS, (u) = k) &2
k=0 3 P(SG) = HPM > j)

j=0

Now the expression

T P(SG) = DPM > j + k)
(2.6) =
T P(SG) =) (P(M > j)

j=0

67

is a function of k which has the value 1 when kK = 0 and is a decreasing function of k since
P(M > j + k) decreases in k for fixed j. In addition, since M is discrete IFR, it is also discrete NBU
| and hence P(M > j + k) < P(M > j)P(M > k). Thus, the expression in equation 2.6 is bounded
between 0 and P(M > k). However, as kK — o, P(M > k) — 0. Consequently, the expression in

equation 2.6 is a survival function of a discrete random variable.

Next we let M* be a discrete random variable which is independent of the Poisson process

{S,(1): ¢ > O} which has this survival function. Then F, (u) is of the form

Fw) = ¥ P(S,(u) = KIP(M® > k).
k=0

To complete the proof we need only show that since M is discrete IFR, M™* must be discrete NBU.

The condition that must be checked is
PM*> k+1) < PM* > KPM >
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This is equivalent to

3 PSG)=)PM>j+k+1) PSGI=)PM>j+k) J PSGI=)PM> j+1)
=0 g =0 i=9
I PSS =/PM > ) Y PESWI=/)PM> ) 3 PSG)=PM> )
j=0 J=0 1=9

or after some algebra to

MS

SPM>j+k+DPM>A)-PM>j+EIPIM>A+1))P(S()=2)P(SGI=/)<0.
A=0/=0

Since for A < Oor j < 0, P(S(y) = A)P(S(y) = j) = 0, we may rewrite the above condition as

[i]

3 2 (PIM>j+k+DPM>A)~P(M>j+k}P(M>A+1))P(S(y)=A)P(S(1)=,)<0.

A=—00 j=—00

By breaking up this double summation into three parts: over A < j + k, A= j + k, and
A > j + k, realizing tht the middle term of the preceding sum is zero; letting A'=j + k and
j'=A — ksothat j=A— k and A = j' + k (with the consequence that the condition A > j + k is
equivalent with j' + k > A’) and rearranging, we then find that the condition we are checking can be
rewritten as

YIWPM>j+k+DPM>A)-PM>j+k)P(M>A+DIP(S)=2)P(S()=)

A< j+k

~ YT YUPM>j+k+DPM>A)—P(M>j+k)P(M>A+1)
A< j+k

PSS =j+ KPSy =4a-k)} <0,
or
IXUPM>j+k+DPM>A8)=P(M>j+k)P(M>A+1)

A< itk
(PSS =A8)P(S(Gy) =) — P(SG)=/+KkIPS)=A-k))} <0
Noticing that
PIM>j+k+DPM>A)-PM>j+KkPM>A+1D

_|PM>j+k+0) PM>Aa+1)
(P(M > j+ k) P(M > A)

PM>j+kP(IM>A)<0

since M is discrete IFR and A < j + k, we see that it now suffices to show only that
2.7) PSG)Y=AYPSG)=7 - PSGY=j+kKPISGY=A~-k) >0

We may take care of a number of cases rather easily. If A < 0, then A — & < 0 and the left hand side
of 27 is0—0=0. IfA 2 0and;j < 0,thenA — k < Osince A < j + k. Thus, the left hand side
of 27 is0-0=0. If 0 < A < kandj = 0, then the expression on the left hand side of (2.7)
reduces to the nonegative quantity P(S(y) = AYP(S{(y) = j). Finally, we consider the case where
A 2 kand j 2 0. First, note that if A 2> kand A < j+ k then j = 0. If k=0 then (2.7) is
immediate, thus we consider k > 0. The left hand side of (2.7) is

eMOY)A e MOy e MOy YR et (y) Tk

A 7! G+k)! (A—k)!
-2y Ry
—-’l—M—{(Hk)(Hk— D...G+D-AQ-D...QA—k+1D)

A+ K
which is clearly nonnegative if A < j + k. This completes the proof.
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Next, for the proof of Theorem 1 (iv), we refer the reader to the paper of Esary, Marshall, and

" Proschan. We now show that (v) of Theorem 1 follows from (iv) in much the same fashion that (i)

followed from (iii).

PROOF OF THEOREM 1 (v): Consider a random variable T whose life distribution arises from a
shock model where M is discrete DMRL. In order to show that it is DMRL, it suffices from Proposi-
tion 2 to show that F, is an NBUE distribution for all y. However, in light of {iv), we need only show
that F, arises from a shock model in which the number of shocks survived has a discrete NBUE distri-
bution. Now as before it can be shown that

) T P(SG) = DP(M>j + k)
F) = FAPGS,(u) = k) £
k=0 3 P(SG) = )HP(M > )

/=0

Again, we can show that the expression

T P(SG) = )PM > j+k)

J=0

T P(SG) = HPM > ))

j=0

is the survival function for some discrete distribution.

Now if, as before, we let M* be a discrete random variable which is independent of the Poisson
process {5, (¢): ¢ > 0} and has this survival function, then F, (&) is of the form

Fw) = ¥ P(S,(u) = K)P(M* > k).
k=0

To complete the proof it will suffice to show that M* is discrete NBUE since M is discrete DMRL.
That is, it will suffice to show that

28) (PM* > D) T P(M* > &) < 3 PM* > k).
k=i k=0

This can be simplified to

TSPEG =) TPM>j+k) 3T PG = DPM > j+ k)
k=]

(2.9 =0 g 222
2P(S(y)=j)P(M>j+l) ZP(S(v)=j)P(M>j)
j=0 j=0

Now after some algebra we may rewrite the condition from (2.9) as

T 3 (PGS0 = DPSG)I = 0P > j+ DPM > 8)
=0 40
! z L=
'P(M>j+/) ,(_ZH,P(M K= P s ) ,{_251 id ")l =
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Since for j > 0orA < 0, P(S(y) = j)P(S(y) = A) = 0, we may rewrite the preceding as

S ¥ (Psw)=nPsw)=0PM >+ 0P > a)

j=—o0 Am—oo

[_1_§p<M>k)_ l <o

PM> j+1) & P(M > A) 2% P(M > k)]

By breaking the summation into three parts and using methods analogous to the IFR case we can
justify this inequality and thus complete the proof.

3. A BIVARIATE SHOCK MODEL

Now consider two devices which are subject to shocks. We will denote the number of shocks to
devices 1 and 2 in [0, t] by S;(¢) and S,(¢), respectively. Further, we et (M, M,) denote the random
number of shocks until failure of devices 1 and 2, respectively. Block, Paulson, and Kohberger [2]
have unified some of the various bivariate exponential distributions in the reliability literature by taking
(M,, M,) to be a bivariate geometric distribution with joint survival function given by

P ooy + )" i my < my
P(M| > ml,M2> m2)=
<

m - .
piit (pro + pi)" " if my

where pog + por + o+ P =1, p1o + P < 1, and pg; + py; < 1. If we take S;(r) = S,(1) 10 be the
same Poisson process, then (T, T;) will have a Marshall and Olkin bivariate exponential distribution.
If S;(¢) and S,(¢) are taken to be independent Poisson processes the resulting joint distribution of
(T, T,) turns out to be of the type which has been discussed by Downton [4], Hawkes [6], and Paul-
son [8] depending on the choices of the various parameters. Consequently, in this section, the model
in which the shocks occur simultaneously to the two devices, i.e., §;(1) = §,(r), will be called the
Marshall-Olkin type of shock model, while the model in which the shocks occur according to indepen-
dent Poisson processes will be called the Downton-Hawkes-Paulson type of shock model. We will now
consider various bivariate discrete NBU conditions on (M,, M,) which yield bivariate NBU conditions
of the type considered by Buchanan and Singpurwalla [3].

Marshall-Olkin Shock Models

Consider two devices subject to simultaneous shocks occurring according to a Poisson process.
Letting M, and M, represent the number of shocks until failure of devices 1 and 2, respectively, we
will prove some results about H (1), r;) = P(T, > ¢, Ty > t,) where T, and T, are the respective life-
times of the devices.

PROPOSITION 3: If P(M, > my+j, My> my+ /) < P(M,> my, My> m)P(M, > j,
M, > j) for all nonnegative integers m,, m,, j, then H(ry + x, 1 + x) € H(¢, ) H(x, x) for all #;,
t, X =z 0

PROOF: We will prove this for 1 £ 1. The proof for the case where 1, 2 r, is analogous.
Throughout the proof we will make crucial use of the stationary independent increments of the Poisson
process. We begin by writing for 1, < 1,

oo

Hit,p)= 3 3 P(S() =k, S() = k)P(M, > k. My > k).

k=0 ky~k,
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By using the stationary independent increments property, we may rewrite this as

3.1 H(t, 1) = i P(S(t)) = k) i P{S(t;— 1)) = DPM, > k My > k + i),
k=0 i=0

In an analogous fashion we may then also write for fixed, but arbitrary x = 0,
_— oo k oo
Hly+x, 1+ x) = 2 Y z {P(S(1)) = A)P(S(x) =k = A)P(S(1— 1)) = i)
k=0 AmQ i=0
PM, > kM, > k + 1))

by using the stationary independent increments property. Next by interchanging the orders of summa-
tion and performing some algebra it can be shown that

17([|+x, 12+X)= E[P(S(f))=A) 2P(S(12"!1)=f)P(M|>A, M2>A+l)
A=0 i=0
PM >A+iMy>A+j+1i)

3PSk =) PM, > A M, >A+1i)

j=0

By using the NBU assumption on (M, M,}, we have

Al +x0+x) |3 PSU) =8) T PSS~ 1) =DPM, > 8, My> A+ ,-)].
i=0

A=0

i P(S(x)=j)P(M, > j M, > j)‘-

j=0
Rewriting the right-hand side of the above inequality we have
(3.2) H(t +x 6+ x) < H(ty, ) Hx, x).

We remark in passing that if the direction of the inequality in the hypothesis of the preceding proposi-
tion is reversed, then the inequality in the conclusion is reversed. This would be a model of stochastic
improvement with age. We also note that the boundary distributions (ones in which equality holds in
equation (3.1)) in this case are the distributions with the bivariate loss of memory property. If
exponential marginals were required, the boundary would be the Marshall-Olkin bivariate exponential
distribution.

PROPOSITION 4: If P(M, > m + jj, My > my+ j)) < PIMy > my, My > m)P(M, > j,,
M, > j,) for all nonnegative integers my, my, jy. jr Wwith (my— my) (y— Jj» 2 0, then
H(f] + x, + X2) < H(’]Jz)H(Xl, Xz) forall ¢, 1, x1, x3 2 0 with (¢, — 12) (x, - Xz) 2 0.

PROOF: We first assume that f; € 1, and x; € x;. As we have seen in equation (3.1) of the
proof of Proposition 3

Ay, 1) = 5‘_0 P(S(1) = k) sjomsuz 1) = DP(M, > k My > k + 0.
Now we may write H (1, + x, 1 + x;) as
H(t + x; 134 x3) = ki) io{P(S(t, +x)=KkWPSU— 1+ x;—x))=1)
P(M; >k My > k + i)}

Now by using the stationary independent increments property, interchanging the order of summation,
and performing some algebra, we can show that
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ﬁ(l|+.x'|, 12+X2)= E P(S(f])‘:A) ZP(S(12—11)=H)P(M| >A,M2>A+ﬂ)

A=0 n=0
TP =) T |PSG—-x)=m
j=0 m=0

PIM >A+jM;>0+j+n+m)
P(M, > A My,>A+n)

Using the condition on (M;, M,) given in the hypothesis of this proposition we then have that

f_l(t1+x,, 12+x2) S

i P(S(l[)=A) “2 P(S([z— I1)= H)P(Ml > A, M2 > A+n)}
a=0 n=0

m=0

li P(SG) =) 3 P(Stxs= x)) = mP(My > j, My > j + m)].
J=0

But the right-hand side of the preceding inequality is just H(r,, 1;)H (x, x,). Thus, we have for
0< € nand 0 < x; € x; that

(3.3) HG +x;, t;+x) < HGy, ) Hixy, x,).

For t; 2 t; 2 0 and x| 2 x; 2 0, an analogous argument will lead to equation (3.3). The boundary
distribution (in which equality holds in equation (3.3)) turns out to be the Marshall-Olkin bivariate
exponential distribution. Also a reversal of the inequality in the hypothesis of this proposition leads to
a reversal of the inequality in the conclusion. This is a model of stochastic improvement with age.

Marshall and Shaked [7] have considered a cumulative damage model! in which the damages
(D, Dy;) are independent and identically distributed random vectors with a joint distribution function

G. Then if d, and d, are the fixed failure thresholds of the devices, then the survival function of
(M,, M,) has the form

my m2
P(M|>m|.M2>M2=P2D|,<d|,EDziSdz.
i=1

i=1

Marshall and Shaked prove that when the survival function of (M, M,) is of this form that the

hypothesis of the preceding proposition is satisfied. Consequently, the joint survival function of the
devices satisfies equation (3.3) for (1, — ;) (x; — x;) 2 0.

PROPOSITION 5: If P(M,> m+j, My>m+ ) < PIMy> m My>m) P(M, >
M, > j) for all nonnegative integers m and j, then H{/ + x, 1 + x) € H{1, DH (x, x) forall 1, x 2 0.

PROOF: By the stationary independent increments property we can write

Hit+xt+x)= 2} E‘BP(S(r) =KIP(S(x)=jIPM, > k +j M, > k + j).
k=0 j=
Using the hypothesis of the proposition, we have
Ae+xi+x< ¥ iop(sm = KIP(S(x) = YP(M, > k My > KIP(M, > j, My > j).
k=0 j=
The right-hand side of the preceding inequality can be rewritten to yield

HGu+xt+x) < HG, )H(x, x).
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APaiiiialy b Bt T

Finally, we will conclude this section with a counterexample. The question is whether a discrete
NBU condition

P(Ml> m|+j],M2> M2+_]2)<P(M] > mi, M2> mz)P(M1>j1,M2>j2)

for all nonnegative integers m,, m,, j;. j, would imply the continuous analog
f—f(ll + X1 0 + Xz) S 1—{(!1, Iz)ﬁ(.xl, Xz) for all f, 13, Xy, X3 2 0.

The following counterexample answers this question in the negative. Suppose that M; and M, are
degenerate random variables with M, = 1 with probability 1 and M, = 2 with probability 1. It can be
shown that P(Ml > m + jy, M2 > my +j2) < P(Ml > my, Mz > m;)P(M, > Jn Mz > jz) and
thatif 1y < #5 x; > xpand 1) + x; > 1, + x3,

Al 1) e Ny — fl))k

H('l+xl,lz+X2)—‘Fl(l|, fz)f_l(xl,.x'2)=€ X!

k=2
> 0.

However, an NBU result along these lines does hold in the case of the Downton-Hawkes-Paulson
Shock Model.

A Downton-Hawkes-Paulson Shock Model

In this model we consider two devices subject to shocks occurring according to independent Pois-
son processes. Let {(S,(¢1): + = 0} and {S,(¢+): ¢ > 0} be these processes and (M, M,) be the random
number of shocks until failure of the respective devices.

PROPOSITION 6: If P(M, > m +j;, My> my+ j,) < P(IM; > m, M, > m))P(M, >
Jir Ma>_ j)) for all nonnegative integers my, my. jy, jo. then H(ty+ x, 1+ x3) £
H(t), )H (xy, x;) for all ¢}, 13, x1, x3 2 0.

PROOF: By the stationary independent increments property a- | an interchange of the order of
summation we have

f—l(r|+x1, f2+X2)= i Z u.: “z P(S,(x,)=m, SZ(XZ)= ﬂ)P(M) > m, M2> n)

m=0 n=0 k=m j=n
P(M, >k My> j)
PM,>mM;>n)]

PGS\ (r) =k —m Sylt)=j—n)

Using the hypothesis of the proposition, we can write

Hiy+ x4+ x) £ T T (PGS = m S(x) = n)P(M, > m My > m)

m=0 n=0

T T PGS ) =k = m Syl =)~ n)

k=m j=n
PM,>k—m My> j— n).

By a change of variables

H + xy, 6+ x3) € i i P(S\xp)=m S;(x))=mPM; > m M, > n)}.

m=0 n=0

T PGS, (1) = k Sy(ny) = DP(M, > k. My > _,-)].
k=0 j=0

But the right-hand side of the preceding inequality may be rewritten as H1,. 1))H (x), x;). thus com-
pleting the proof.
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ASYMPTOTIC JOINT NORMALITY OF AN
INCREASING NUMBER OF MULTIVARIATE ORDER
STATISTICS AND ASSOCIATED CELL FREQUENCIES

Lionel Weiss
Cornell University
Ithaca, New York

ABSTRACT

Take n independent identically distributed (IID) observations from a con-
tinuous r-variate population, and choose some order statistics from each of the
r variates. These order statistics are used to construct a grid in r-dimensional
space. Under ceriain conditions, it is shown that as » increases we can choose
an increasing number of order statistics in such a way thal the asymptotic joint
distribution of the chosen order statistics and of the frequencies of sample
points failing in the cells of the grid can be assumed to be a normal distribu-
tion. An application to testing independence of random variables is given.

1. NOTATION, ASSUMPTIONS, AND STATEMENT OF THEOREM

We observe n 11D rtuplets (X,(i), ..., X,(i)), i=1, ..., n, each with joint cumulative distri-
bution function (cdf) F,(x,, .... x,), joint probability density function (pdf) f,(x), ..., x,). We
choose a set of order statistics from (X, (1), ..., X,(n)), a set of order statistics from
(X,(1), ..., Xy(n)), ..., and a set of order statistics from (X,(1), ..., X,(n)). These chosen order
statistics are used to construct a grid in r-dimensional space. This grid defines a system of r-
dimensional cells, each cell having a frequency of sample points falling in its interior. It is clear from
the argument of (1] that if the number of chosen order statistics for each variate is fixed, then under
mild conditions the joint asymptotic distribution of the chosen order statistics and the cell frequencies
(all properly standardized) is normal. But for certain purposes, it is necessary to let the number of
order statistics chosen increase as n increases. In this paper we show that under certain conditions we

still get a joint asymptotic normal distribution.

For typographical simplicity, until Section 3, we discuss only the case r = 2, and we write the »
1ID pairs observed as (X]. Y)). (X;. Y3). .... (X,, Y;). The joint cdf and pdf for (X, ;) will be
written as F,(x, y}, /,(x, y), respectively, and so are allowed to depend on n. G,(x), g,(x) denote,
respectively, the marginal cdf and pdf for X|. H,(x), h,(x) denote, respectively, the marginal cdf and

pdf for ¥|. Define F{"(x* y*) as % Fo(x, ) iayeymye, and F2(x*, y*) as aiy Fro(X, Yl gmxt pmye-

For each n, choose p,, ¢, and L, so that 0 < p, < ¢q, <1, and np,. ng,, L, and

nq, — np, L. . " . ..
K, = —_"_T—l are all positive integers. These quantities also are to satisfy other conditions to be

n
specified below.

X{iy < ... < X{, denote the ordered values of (X|, ..., X;), and Y};; < ... < VY|, denote the
ordered values of (Y|, .... ¥,). X% denotes X(, 4 - ne, and Y5 denotes Yin, 4 (-1, for
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i=1,..., K, + 1. Let ND(n) (for "No duplication in n observations") denote the following event:
there is no pair (X/, ¥}) with X/ among (X}, ..., X} ;) and ¥ among (Y}, ..., Yx +1). We assume

that {f,. p,. 4,. L,} are such that lim P[ND(n)] = 1. This assumption will be discussed in Section 3:

n—oo
under it, for all asymptotic probability calculations, we can (and will) assume that ND(n) occurs for all
n.

Define X§ as suplx: G,(x) = 0}, X%, 2 as inflx: G,(x) = 1}, Y& as suply: H,(y) = 0}, and Y% .,
as inf{y: H,(y) = 1}. Thus, these values may depend on n, and may be —oo or oo,

Define N; as the number of pairs (X], ¥)) in the open rectangle in (x, y)-space defined by
(X' < x < X! Y}y <y < Y}, for i jranging between | and K, + 2, inclusive. Define S as 1 if
the Y’ originally associated with X} falls in the open interval (Y?_,, ¥?) and as zero otherwise, for
i=1 ....K,+1and j=1, ..., K, + 2. Define T; as | if the X’ originally associated with Y falls
in the open interval (X!, X? and as zero otherwise, for j=1, ..., K,+landi=1, ..., K, + 2.
The occurrence of ND(n) then implies all the following equalities:

A,+2
Yy S, =lfori=1, .., K, +]1,
j=1
K,+2
Y T,=tforj=1 ..., K, +1,
i=1
A,+2

K+t
Y N+ 3 Ty=np,—1,
=1

j=1

K,+2 K+
(.1 2 N; + 2 Ti=L,—1fori=2 ..., K,+1,
=1 =1
K,+2 K+t
Y Nkt X Tike2=n— nq,
=1 =
K,+2 K,+1

z Ny + z Sqn=np,— 1,

=1 i=]

K +2 K,+1

YN+ Y Sy=L,—1forj=2 ..., K, +1,
j= i=]

K,+2 K,+1

3 Nig,+2 + 3 Sik,42= N = ng,.

i=] i=]

np, + (i— DL,

Let G(i — 1, n) denote G, ] fori=1, ..., K,+ 1, define G(-1, n) as X§.

n
- — ., + G — DL

and G(K, + 1. n) as X% .,. Let H(j — 1, n) denote H,:'{&;"—)—il for jm 1, ..., Ky +1,

and define H(-1,n) as Y3, H(K,+1.n) as YX,+» Let g(i — 1. n) denote £,(G(Gi -1, n)) for

i=1,....K,+1,and h(j — 1, n) denote h,(H(j —1.n)) for j=1, ..., K, + 1. Note that these
definitions imply _  that FMG =1, n), H(K,+1,n) = gli—1,n), and
FPGK, +1.n), HG—1.n) = K(G = 1. n).
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Next, define X, as vn g(i — I, n) (X?— GGi—-1.m)fori=1, ..., K,+ 1, and define Xyas 0
and X; ,; as 0. Define ¥, asvn A — 1, m)(y:=H(G~1.n)forj=1, ..., K, + 1, and define

Yoas O and ¥y .;as 0.

Fori=1,....K,+2andj=1, ..., K, + 2, define Q, as

FUGG—-1.n), HG~ 1. 1) X/8(i — 1. n)
+ F2(GG-1.n), Hi— 1. a)Y/h( =1, n)
- FY(GG=2.n), HG— 1, n)) X_/8(i — 2. n)
- F2(GGi-2.n), Hi— L. a)Y/hG =1, n)
— FY(GG-1.n)., Hi—-2.aN X/2G = 1, n)
~ F2GG—-1.m), HG =2, n)Y,_/h(j =2, n)
+ FI(GG—=2.n) . HG = 2. aNX_/gli — 2. n)
+ F2(GGi—2.n), HG =2 n)Y,_/h(j—2.n)

where any term containing Xo, Xx _+2. Yo, OF YA”” is defined to be zero. It follows from the definitions

A 42 o A2 K,+2
that 3 Q,=X—-X_.s0Y Y 0;=X,fora=1 ... K, +2 Similarly, Y ¥ Q= Yyfor
=1 - =1 y oy
B=1..... K, +2 ’
Define p,(i, j) as the probability assigned by F,(x, y) to the rectangle (GGi—2,n) <
x < GlGLi—-1,m), ![-(I(j—2.(n) )S y < HG~1,n)) for i=1,.... K, +2, j=1-...K,+2
ii — NPn i, J ij
Define W, as S A\LTL and Z; as W,,————gj——~, for i=1,..., K,+2 and
~ np, (i ) V. li )
j=1, ..., K, + 2. Then we have
K +2 K +2
nté Ra —2K,+1)
Y ¥ Velinz,= —
jml =) n
a K+t
-3 E -
(1.2) Y S Vo) Z; = — 5 - X,
py R vn
fora=1, .... K, +1
8 A+l
8 I\”+2 -Zl EI Sil B
,,(.,') Z,“—' = = - Y
& L Vet v g
forg=1, ..., K, + 1L

Let g* denote min (g,(x): G;'(p,) < x € G, (g)}, h; denote minlh,(y): H ' (p,) £
y < H'(q,)), b, denote minlgs, k). and ¢, denote min{/f,(x.y): G;'(p) < x < G\ (q,).

H,,‘l(p") S Yy g H,,_‘(q,,)}.
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We assume the following:

(1.3) LG ), EWV(x, y), FRxy),
9 9 9
ax g, (x)}, ‘ay h, (D)}, ox S x)y,
and Glyf" (x,y) | are all bounded, for all values of x,y, and n.
(1.4) min p,(ij) = 0 | =], max p,ij) = 0 |- ).
i) K2l ap 7" K}
(1.5) There exists a finite value b so that b, < b for all sufficiently large n.
15
(1.6) "— approaches zero as n increases.
bivn PP S
KJ
a.n - b,,:/; approaches zero as n increases.

Denote by f, the joint pdf for the random variables {S;, T;;, X,. ¥;, W,}.

Now we construct an "artificial” joint pdf for the random variables {S;;, T;;. X, Y;, W,}, as fol-

lows. The 2(K,+ 1) +1 sets of random variables (S, ..., S;x 4} for i=1..... K, + 1,
(T ... Tk el for j=1,..., K, +1, and (Z;i=1 ..., K, +2, j=1 ..., K, +2
(ij) # (K, + 2, K, + 2)} are independent of each other. The joint distribution of {S;;, ..., Sik,+2l
K,+2
is given as follows: each S;isOorl, ¥ S, =1, and
=

(FY (Gi—1,n),H(j—1,n)) — F,()(G (i~1,n),H(j=2,n))]

P(S;,=1)=
' gii—1.n)
K, +2
The joint distribution of {7}, ..., Ti.K"+2} is given as follows: each T, is O or 1, ¥ T,=1, and
=1
P(Tji=D = (E&(G(i=1.0), H(=1,1)) — FD(G(i~2.0). H(i=1,n))]
h(j—1, n) '
The (K,+2?—1 random variables [(Z;; i=1 ..., K, +2 j=1 ... K,+2
(i) = (K, + 2, K, + 2)} have the following joint normal pdf:
1-(K,+2)? -1 1 R R
N2m) T (p (K, + 2. K, +2) ?exp [—7 > ¥ i
j=1 =1
K +2 K, +2
where z; . +2 iS given by the identity Y Y /p.(ij) z, = 0. For future use, we note that in this
jml =l
distribution, the variance of Z; is 1 — p,(ij), and the covariance between Z, and Z;, (where
Gij) = (i'JY) is —/p,(i))p,(i'.j). Now define (X, ..., Xe,«10 Yoo )’,‘."H} in terms of

{S,. T,. Z,} by means of equations (1.2). Defining Q, as above, define W, as Z, +

Q,

N pa i)

for
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i<K,+1and j € K,+ 1. Then define W, as the closest value to W,, that makes np,,(i,jk) 4;
(4

\/np,,(i.j)w,, an integer (positive, negative, or zero). Finally, define W.k,+2 by the equation 2

j=1

K,+2 K +2 K,+2 K, +2

N, W, = 3 N,—n 3 p,Gij), Wy, +2, by the equation Y Vi)W, = ¥ N,~n
-1 =1 =1 -1
K, +2 ' ! K42 K, +2 ' ¢ +2

K+
2 p.(ij), and Wy o5k .o by the equation 3, 3 /np,(ij) W, = ~2(K, + 1), where ¥, N, and

r=1 =1 =1 j=)

K,+2
3. N, are defined by the equations (1.1).

i=1
Denote by f3 the joint pdf for the random variables {5‘,»,, 7',, :\7, 7,, W,,} induced by the process
just described.
For any measurable set C, in the space of (S, T,. X, ¥;. W,]}, let P; (Co), Pp;(C,) denote the
probabilities assigned to C, by f,, and f7, respectively. In the next section, we prove the following:

THEOREM: lim sup lP; (C) — P (CPI=0.
n—oo n n n

2. PROOF OF THE THEOREM.

The theorem combines the results of [1], 12], and [3], and the proof is a combination of the
proofs in those papers. First we list some notation and elementary resuits that will be used in the

proof.

The symbol "log" always means the natural logarithm. For any event E, E denotes its negation.
& (x) denotes the standard normal cdf. If we state that a sequence of random variables {V,,} is
0,(r(n)), it means that T(T)Z;_(T) converges stochastically to zero as » increases, for an arbitrary

sequence 8 (n) with 8(n) approaching o as n increases. Thus, if {¥,} is 0,(r(n)) and r(n) approaches
zero as n increases, then V, converges stochastically to zero as n increases.

The following equalities and inequalities are well-known:

2.1 For any events Ey, ..., £,, P(E,N ...NE,)) 21~ i P(E) (Bonferroni' s ine-
quality). "
R
(2.2) Foranyx > 0,1 — ®d(x) < m—e 2
2.3) For any positive integer m, log m!= -%— log 2 + |m + % logm—m+ ﬂ‘:—)
where lw(m)| < 1. (Stirling's formula).
(2.4) If V is any random variable with P(V < 0) = 0, and if & is any nonrandom positive

value, P(V < b) 2 1 - £~(b—V)— (Chebyshev's inequality).

2

3
(2.5) If x| < 1,00g 0+ x) = x ~ X

+ ———————— wh gl < 1.
7t en Where ol
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LEMMA 21: If ¥V,, ..., V, are jointly normally distributed, with zero means, variances
af, ..., o}, respectively, and any covariances, and if & denotes max (o, ..., o,), then for any
2ma c?
c>0P[max|X|<cl>1— exp [——|.
=, ... I P

PROOF: A combination of (2.1) and (2.2).
LEMMA 2.2: Under both £, and /%,

. [ k.
s W8~ 1.0 = o7

K,
.and{r?alel”}fll(/:/rh(/—l n) =0, [\/Zb,, :

PROOF: We only have to give the proof for X;, since the proof for Y, is the same. Under L., we
can assume the joint distribution of {X;} is the normal distribution described in [2], and then set

c= \/_" in Lemma 2.1, completing the proof. Under f}, using equations (1.2) we note that
n

s K t2 2K, +2) o« Kp*2
z 2 \/p,,il 15 —\"/——_—, and that the variance of 2 V2, G jiZ,-j is less than
je=l j=1 h jml =l

one. The result then follows directly from Lemma 2.1.

_ — K,,S
LEMMA 2.3: Under f,, {,-,jgll?fn W,/ np, G} =0, [b,,\/;

PROOF: Let (8,} denote a sequence of nonrandom positive quantities such that lim g8, = oo,
n-——co

K
'l;"\/.'l =0. Let N‘” denote the number of (X/, Y/} falling in the open rectangle
n

and lim
(GG -2, n < x < G- Ln), HG—2n) < y < HG ~ 1, n)}; let Nf® denote the number of
(X;, Y)) falling in the open rectangle

—1 | Pn + (’—Z)L ﬁn < ~1 P + (i~ I)Ln _ :BnKn W
G n e | <X <O n b, | |
-t | et (-2L, L BaKal y < HA | +U-DL,  B.K,

n \/—b " n ~ Jnb,
and let N? denote the number of (X}, ¥;) falling in the open rectangle
nmp, + (i=2)L, B,K, np, + i—DL, B,,

-1 <x <Gt
Gr n Jnb, | S n T f
np, + G—2L, B.K np, + (G—1L, B
H_l n n_ Ennl o < H_] n n :
" n Jno, | =7 " n \/_b

(G, '(a) is defined as X§ if a < 0, and as Xk +2ifa 21 H;'(a) is defined as Y} if @ < 0, and as
Yiifa 2 1),

Clearly, N, < NV < N/, and by Lemma 2.2 with probability approaching one as n increases,
we have N® < N, < NP Now NP — N9 is the number of pairs (X;, V) which fall in a region

- 28,K,
consisting of pieces of four strips, each strip having probability (under f,) no greater than 5_’_' b
n
8nB,K "

Therefore, E{N? — N9} < _fb_l and using (2.1) and (2.4), if B, is any positive value,
nb,
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8n(K, + 2)K.B,
VnbB,

PIN? - NO < B, for all i, j]1 21— Below we will choose 8, and 8, so that

Vnk} _
—E—i& approaches zero as n increases; then we can say that with probability (under f,) approaching
n%“n -—
one as n increases, we have [N, — N{V| < B, for all i j.
N — np, G J) -
Now define W, as ————"—""~  Then with probability (under f,) approaching one as n
i G ) h y Ja) app g
. ' Wij('“ Wu Bn
increases, — — "— for all 44 But by [3] and Lemma 2.1,
'\/np,,(l.j) np, G j) np, (i, j)
Wl K,/logK -
[max \/_._(— ) —"—% . Since B8, can increase arbitrarily slowly, we can let 8, increase at
np, (i, J

3

. approach zero as n increases. This completes the proof.
n“n

any rate that makes

KS
LEMMA 2.4: Under £, { Jmax (W, 1/ np, G, Y = [b\/—

i,

PROOF: For i and j both less than or equal to K, + I, is within L of W,,‘ and

0 2 np, G, )
i

W,=2Z,+ \/—T—(l——) Applying Lemma 2.1 to (Z--} and {Q,], we immediately find that under /3.
n

v J
W, K\/log K . ,
{ur;l?f«'—m)\/_,,__(jf_j =0, -—f'bn—\/;—" Since z{ N, G W, is 0,(K,), we see that

Wik <2l 0 [ K \/logK,
=Y

U

| Wk 12,1 [ K3/ logK l

and { ma
ks Jnp K12 bn j£Kutt Jnp, (R, ¥2, )
From the definition of W, der f3. it follows th W2 k] oK,
1 t n , it ws that =
rom the definition of Wy ., g > under f3, it follows tha N N ) \/—
K} log K,
————=|. Thi letes the proof.
o Tn is completes pr
LEMMA 2.5: At every point ( T X, 7, W,»,-) at which f, is positive, we can write
+2 +2
log 7,5, T, X, . W,) as 4,(n) = 2 z Z7+4,(n)
py
(,+1 K+ FGG-1,n), HG=1, M) = FGGi—1, n), HG=2, n))
+ S,-j log =
-1 = gli—1,n)
K +1 K, +2

n

+ L X Tl

= i=1

Ry

F2@GG-1,m HG-1, n) = FG (-2, n), H(- 1, ,ml
hG-1, n)

where 4;(n) is nonrandom, and A,(n) converges stochastically to zero as n increases under both A7,,
and /3.
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PROOF: From the multinomial formula, assuming that the event ND (n} occurs, the joint pdf for
[S T X‘ Y’ N ) is the product of the following four expressions:

n'!
Kit2 Kt 2 [F (X8 V2 ~ F Xy, YD) — F (X% V) + F(Xey, Yo 1™
i W
K,+1 K,+2
I1 I1 [FV(x YN - EN(xr, ,)] Y
i=1 =1
K,+1 K +2 r
H| Hu (F2xy vy — FP Xy, Yol
=1 =
if ¥;, S,. T, are nonnegative integers satisfying the equations (1.1), and X§ < X< ... < YA .7 and
L AN
ri<... < Yk +24 the joint pdf is zero, otherwise. From this it follows that when j,, is posmve we

can write log j,,(S X, Y W) as the sum of the following six expressions:
(2.6) log n'!
K, +2 K, +2
2.7 - 2 2 log (np, (i, j) + ~/np, G, j)
i=1
K, +2 K. +2 [ np, (i, j)
(2.8) j; p2 +\/n,,(—l.W
— Y _l
F|Gli—1,n) + ~—=———, H(~1,n) + —1——
e Vng(i—-1,n) Utm Vah(G—1,n)
— X Y
—F |G (-2, ) + —— +
T TngG-2.n) H - Vnh(j—1.n)
X log
— X; _ )
-F|Gli-1,n) + —————, H(j-2,n) + ——"———
4 Vngli=1,n) =2 nh(-2.n)
- - |
+F G (i-2,n) + —————, H(j=2n) + —L"—
2+ ey AU VakG-2m) |
- X, — Y
FVGGi-1,n) + ————, H(—-1,n) + ——~L1——
K1 K +2 l R TR WS R Jﬁh(/—l.n)]
(2.9 ¥ 3 S;log X, ¥
=1 = —FOGGi=1,n) + ——— H(j=2.n) + ——2=
" l S Vngli—1,n)’ (=2 vn h(j=2.n)
- X, — Y
FPG(i-1,n) 4 —————, H(—-1,n) + —————
K,+1 K, +2 [ e Vn gli—1,n) G-t Vrnh(=1.n)
(2.10) Y Y T;log Y
mbomt ~F2|Gi-2,n) + —""— H(~1n) + ——1——
l o Vng(i=2,n) U=Lm Vo hG=1.n)
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K+
21D 2 log Vn g(i—1,n)) - ): log (/nh(j=1,n)).
Now we carry out the following sequence of calculations.

Apply (2.3) to each term in (2.7), and write log (np,(ij) +,/np,,ii,j;W~) as log np,(ij) +

W.. W.
1 + Tp—\/—(ulﬂ—] then apply equation (2.5) to log[l + T\/__('_;;—] for all i j.

log

X, — Y, _
Expand F, Gli-l,n) + ——————— H(-1,n) + ——~— around (G (i—1,n),
P \/_g(:—l n)’ v vn h(i—1,n)

H(j—1,n)), treatin an as infinitesimals, and stopping with terms qua-
/ & \/Eg(i—l,n) \/—h(/ 1,n) PPing g
dratic in these infinitesimals, for i = 1, ,K,+1land j=1, ..., K, + 1. This allows us to v»['(ril%

.
the log in (2.8) as log Ip, (i, j) + % + R, (i, j)], where max IR, (i, )| =0, b2 . We note that ¥
K,+2 K,+2 K+2 * 0 n i=1

¥y R, j)=0 and z Y 0,=0 Write log p, G, j) + T: + R, )] as log p,(i, j) +
1 =1 1-1
0, R, j) . . . .
log |1 + — + and apply equation (2.5) to this last logarithm, for all i, j.
v p, i j) p. G f)

_
Vn h(i—1,n)

as infinitesimals, and stopping with terms linear in

Expand F,,‘“Iau—l.n)+ HG-1n) + around (G (i—1,n),

X,
Vagli—-1,n)’
Y

H(j=1.n)), treatin ‘ . —

8 2L Jn hG=1n)
these infinitesimals, for i =1, ..., K, + land j=1, ..., K, + 1. Then treat the resulting logs in
(2.9) a. the logs in (2.8) were treated.

For (2.10), expand F.? instead of F,"’, and then proceed similarly. After carrying out the steps
indicated, the proof of Lemma 2.5 follows directly from Lemmas 2.2, 2.3, and 2.4, and assumptions
(1.3)-(1.7).

LEMMA 26 At every point (5, T,, X;, ¥, W,) at which f} is positive, we can write
log/‘(S T X, Y W)as

| Aat2 A,
Ayn) ~ 3 Y T zZ2+ a0
=1 =1

Kol R FV(Gi=1,n), HG~1,m) = FY (G(i—1,n), H(j=2.n))

+ 3 5 1

l-zl l-zl o8 §(i—l,n)

Rotl Kyt2 F2(GGi~1,n), H(j~1,n)) = F2(G(i-2.n), i—l(j—l.n))l
+ i =

z? gf o8 h(j—1,n)

where A,(n) is nonrandom, and A,(n) converges stochastically to zero as n increases under both f,
and f3.
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PROOF: From the construction of /%, we have that if f3(5,, T,, X, ¥,, W,) is positive, it is the
product of four expressions:

K+l K,+2 W (F(i_ (i e (i (i Sy
212 i FM(GGi-1,n), H(j=1,m)) = FV(G(i=1.n), H{j 2.n))l
i=l =1 gli—=1,n)
2.13) Kt Kt 2 [ FQ(G (i=1,n), H(j—=1.n)) — F2(Gi=2.n), H(j—1,n)) l’ﬂ
- j=1 =l h(G—1.n)
1-(K,+2)2 -+
(2.14) Jn) V2m) T (g (K, + 2, K, + ) 2
K42 K 42 _
2.15) f- fexp[—— T Xz aw, o dWy ko
j=l =1
where J(n) is the absolute value of the determmant oﬁthe transformation used in going from [Z,,l to
{X. Y. W, for given values of {5,. T, W, and R, is the region given by the inequalities
W, 1 W, <

- ——mm——— i+ ———_—: ij < K, +1}. Since the transformation used in
M N TN (%) B Wi 2/ np, (i j) ="

going from (Z,} to {X;, Y, W-j—} is linear, J(n) does not depend on any of the variables. The proof of
Lemma 2.6 is completed by treating (2.15) as the analogous expression was treated on pages 145 and
146 of [3].

LEMMA 2.7: Let R} denote the region in (§,-j, 7';, Y,-. 7j. W,j)-space where f* is positive and f,
is zero. Then lim P;.(R*) = 0.

PROOF: R} consists of those points where at least one of the quantities np, (i,j) + /np, (i.j)
is negative. Thus, P (R¥) = P,.(np,,(r,/) + /np,(i,j) W; 20, all ij). Using Lemma 2.4 and

assumption 1.6, it follows that P R:‘,) approaches one as n increases, proving Lemma 2.7.

Now define the random variable V, by the equation

,.(S T , X, Y W)
log / = A(n) — Ay(n) + V,.
fn(su Jir ’Yiv Yj' u/u)

It follows from Lemmas 2.5, 2.6, and 2.7 that V, converges stochastically to zero as » increases, under

both £, and f*. This implies that there are sequences [e,}, {5,) of positive nonrandom quantities, with
lim €, =0 and lim 8, = 0, such that the region R(n) where | V,| < €, has probability at least 1 — 5,

n—oo n-—oo

under both f, and f3. Then we have

(2.16) 1-8, < fmn) 7o<1

217 R(,.)i" - 1At R(,,,f’
(2.18) (1—-8,)e " < J.., )f'

and from these three inequalities,

(2.19) (1-5,) g o4 o
(2.20) MMt 8 e < 1.

It follows from these two last inequalities that 4,(n) — 4,(n) converges to zero as n increases. By the
reasoning used in [2] or [3], this completes the proof of the Theorem.
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3. FURTHER DISCUSSION OF THE THEOREM

The theorem can be generalized in various ways. The subscripts of the chosen order statistics
X, +(-nr,) and Yimp,+ -1} €an be replaced by subscripts which are not evenly spaced, and different

spacings can be used for the X’s and the Y ’s. Also, assumption (1.4) is convenient, but not essential:
it was not made in [3].

The Theorem was proved for the bivariate case for convenience. It is easy to see how it can be
proved for cases of higher dimensions. For example, suppose we observe n IID triplets
X, Y.2z), ..., (X, Y, Z). We define X!, ¥y, Zt for i=1, ..., K, +1, as above. N, is
defined as the number of triplets (X, ¥/, Z) in the open cube in (x, y, z)-space defined by
(X, < x< X, Yo, <y<Y), Z},<z<Z}. The indicator variables {S;}, {7} are now
replaced by lhe following indicator variables: S;; = 1 if the triplet (X', Y, Z') from which X} came is
such that < Y < Yrand Zy, < Z' < Z} and Sy =0, otherwise; T, =1 if the triplet
(x'.v.2) from which Y‘came is such that X*; < X' < Xt*and 2}, < Z' < Z} and T, = 0, oth-
ermse Uy =1 if the mple\ x.vy.zh from which Z} came is such that X} ; < X' < X} and

, < Y < ¥ and Uy, = 0, otherwise. The rest of the development follows the two-dimensional
case almost exactly The necessary modifications of the conditions (1.3)-(1.7) are easily made by fol-
lowing the computations in Lemma 2.5.

Finaily, we discuss the event ND(n). The assumption that ND(n) occurs is used only to guaran-
tee that the equations (1.1) hold. Since these equations hold by construction under f}, we only investi-

gate ND(n) under f,.

In cases where X/ and Y/ are not independent, we proceed as follows. Let M,(a.8) denote the
total number of pairs (X, ¥), with X, < X* and Y/ < Y3. Define §,(a.B) as 1 if the Y’ originally
associated with X2 falls below Y3, and zero otherwise, define S,(a,B) as 1 if the Y’ originally associ-
ated with X2 is equal to Y3, and as O otherwise; define S;(a,8) as 1 if the Y’ associated with X7 is
greater than Y%, and zero otherwise. Define T|(8, a) as 1 if the X'originally associated with Y; falls
below X2, and zero otherwise; define T,{8.a) as | if the X' originally associated with ¥} is equal to
X2, and zero otherwise; define T;(8. «) as 1 if the X’ originally associated with Y} is greater than Xg,
and zero otherwise. Thus, S;(a, 8) + Syla, B) + S3(a. B) =1, T1(B, a) + T1(B, @) + T;(B.a) = 1,
and Sy(«. B8) = T1(B, a) with probability one. It is easy to write the joint pdf for M, (a, B), X3 Y3,
Si(a, B), Syla, B), Sila, B), T\(B, @), T1(B, a), T1(B, a), by using the multinomial formula. From
this joint pdf, and the fact that under our assumptions

M,(a.B)

n

n—K,—1
K,+t

In the special case where X/ and ¥ are independent, P; [ND(n)] is equal to [

2
. and this approaches one as n increases if —- approaches zero as n increases.
n

n
K, +1

— F,(Gla—1,n), HB—1,n))|,

|X2— Ga—1,n)], and | Y§ — HB~1,n)]

all converge stochastically to zero as n increases, uniformly for «, 8 =1, ..., K, + 1, it is easy to
1, (Gla —1,n) H(B—1,n))
show that  P; (S(a, 8’ =1) - — = & is o 1 uniformly  for
" Al Ing(oz—l,n)h(ﬁ—l.n) n
+ +

n

K,
a,B=1,..., K, + 1. Thus, 2 )3 P (Sya,.B)=1)=0 bzl and approaches zero as n
n

a=\ n
increases, by assumption (1.6). Smce the event {S,(a, 8) = 1] is the same as the event that X} and 1}
were originally observed as a pair, if follows from (2.1) that P;" (ND(n)) approaches one as n

increases, under our assumptions.
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4. A TEST OF INDEPENDENCE

Suppose that the problem is to test the hypothesis that X/ and Y/ are independent. Since a strictly
monotonic transformation applied to each X; does not affect independence of X, and Y, a reasonable
test of independence should not depend on the values of the order statistics. We will construct a test of
independence based on {N,}.

L
Choose p,=1— ¢, = —ni Then, if the hypothesis of independence is true, p,(i, j) = -(K—l+—2)_2
for all i and j _Also, it is easily shown that under the hypothesis of independence, Variance
(W} atha Covari (W,. W,} = Covari (w,, W,.} Ko+ 1 Covari
il = ovariance . W4 = Covariance i Wil = — ————— Covariance
) K,+2 v ’ ! (K,+2)?
{W,,-, _W,;,.}= (K_:-2_)2 if i =i and j # j'. These formulas can also be assumed to hold if
n

(K, +2)%p,(i j) approaches one as n increases, uniformly in i and j, and all asymptotic probability cal-
culations will be correct.

2

K2 K, +2
. and note that Q(n) is observable. Then,

(K, +2)N;—n/{(K,+2)
Define Q(n) as L
pp? T

if (K,+2)2p,(i, j) approaches one as n increases, uniformly in i and j, the asymptoti]c2 distribution of

+ +2
n n 1
. . 2 . . _-
Q(n) is normal, with mean (K,+1)*+n ,gi '-zl' [(K,, + 2)p, i, j) K 12
2(K, + 1)2. Then we have the following test of independence of X; and Y;: Reject the hypothesis if
0(n) — (K, +1)?

V2K, +1)?

asymptotic power of this test is

and variance

> &1 (1 —a), where a is the desired asymptotic level of significance. The

K, +2 K, +2

n
V2(K,+1)? /g:l .21

1—-¢ (@M -a) — (K,+2)p, i j) ~

2
K,,+2] '
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MINIMIZING COSTS OF SEQUENTIAL AND PARALLEL
PERSONNEL TESTING PROGRAMS

Paul D. Feigin and Gedaliahu H. Harel

Faculty of Industrial Engineering and Management
Technion-Israel Institute of Technology
Haifa, Israel

ABSTRACT !

We consider groups of tests for personnel selection purposes in which each
test has a known a priori probability of being failed, such failure resulting in
outright rejection and termination of testing. Each test has a fixed cost and
given duration. We consider the minimization of the total expected cost due to
both the fixed costs and the delay costs when the tests may be conducted
sequentially or in parallel. In the latter situation, a heuristic algorithm is pro-
posed and illustrated.

1. INTRODUCTION AND MOTIVATION

Consider the problem of determining the suitability of a job candidate for a particular position.
The personnel manager bases his judgment on an n-dimensional profile—each dimension being a score
on a particular aspect of relevance to the candidate’s acceptability. Our interest is in determining the
optimal order of assembling this profile given that any single very low score can cause the candidate’s
rejection no matter what the nature of the remainder of his profile. Moreover, the various scores are
based on tests which are assumed to be independent so that our problem differs from that of a corre-
lated battery of tests, all of which are used to predict the individual's success (see, for example, Cron-
bach and Glazer [3]). Our assumptions are reasonable when the dimensions represent aspects as
diverse as health, security rating, intelligence, experience, vocational interest, and personality.

For each test there is a predetermined critical score and a candidate whose score is below this
level is rejected outright and no further testing is required. We assume that the proportion of the
population who may fail in this way is known for each test. Conducting each test involves a fixed cost
as well as a waiting time for the receiving of the results. The object is to arrange the tests so as to
minimize the expected costs of testing and delay in reaching a decision. The decision will either be:

(i) rejection due to a "failure," or

(ii) that based on the complete profile.

We are not concerned here with how the personnel manager is to relate his decision to the candidate’s
profile in cases when the latter passes each test—he may even automatically accept all such candidates.

It is our belief that in many employment decision problems, the situation described above is more
realistic than the common formulation of sequential testing. In the latter case the suggestion has been
to place "the selection device that has the highest correlation with job success (validity)" first (Beach (2]
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p. 239). This approach completely ignores the role costs of testing must play in determining the
optimal sequence. Moreover, rather extensive research has to be done on the correlations between the
various tests and the success criterion for each different job. Our approach provides a set ordering
based only on two types of information—the costs associated with each test and the probability of fail-
ing each test. This sort of information may often be available from general sources and does not
require new experimental information.

We also consider the situation were one does not necessarily wait for the results from a completed
test before conducting a new one. This possibility leads us into the realm of parallel testing procedures
and it is here that the major contributions are made based on heuristic algorithms.

2. SEQUENTIAL TESTING

The personnel manager wishes to obtain the candidate’s score on n tests 7y, ..., 7, in order to
consider his job suitability. Each test has a veto failure level: a score below this level (a failure)
automatically precludes the applicant from taking the job. In the interest of saving time one would sug-
gest starting all tests immediately; on the other hand, if there is a good chance of a candidate failing a
particular test it may be worthwhile waiting for the results on this test since there is a good chance of
saving the fixed costs associated with further tests.

For the case in which testing can only be performed sequentially we formalize the discussion by
considering the following assumptions:

ASSUMPTION 1: The nature of the tests is such that the event of passing a particular test is
independent of that for any other test.

ASSUMPTION 2: The a priori probability p; that the candidate may fail test 7; is known for each
i=12 ..., n

ASSUMPTION 3: The cost of waiting to make a decision based on the test results is ¥ units per
unit time. (Decision is made according to (i) or (ii) of Section 1.)

ASSUMPTION 4: Tests may not be run simultaneously, nor may a test be started while the
results on another are pending.

Assumption 2 involves knowledge of the probability that the candidate will fail each of the tests.
These numbers can either be determined from general population proportions or from proportions
appropriate to the subclass to which the applicant belongs. In other words, after a preliminary inter-
view, or from the job application form, the personnel manager may be able to determine to which
broad category the candidate belongs and thus estimate the appropriate failure probabilities. If these
probabilities differ from category to category then so may the optimal sequencing of tests.

Assumption 4 will be reviewed in Section 3.

Denote by ¢; the fixed cost associated with conducting test 7;, and let d- be the duration of this
test. Duration, in some contexts, may refer to the actual time span of the test or, it may refer to the
waiting time for the results to be obtained. In the latter case, the actual physical involvement of the
candidate in the test will be considered negligible (see Section 3) as far as time is concerned.

Under Assumption 4 we can associate the cost

a;=¢+vyd

with test T,, since there is no parallel testing.
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RESULT 1: Under Assumptions 1, 2, 3 and 4, the optimal testing sequence is determined by
quantities {a;/p;} —the test with the smallest value is conducted first and so on.

PROOF: For a given ordering, say 7, T,, ..., T,, the expected cost is given by
n» E(CY=a;+ O=play+ U—pp(=pa;+...+ U=p) ... U1=—p,_a,.

Suppose we change the order of tests 7; and 7,.,. The relevant contribution to E{(C) in (1) is
(1=p) (O=py) ... 0=p_) (g, + (1—pla;.,)
whereas under the new order, it is
(l—p)U=py) ... U=p_) (g + A=p)ap),

the other terms remaining unchanged. From here it is clear that T; should appear before 7., if
a;i/p; < a;4\/p;+1, and the result follows straightforwardly.

The above proof is a simple application of the "adjacent pairwise interchange method" (see, for
example, Baker [1]).

3. PARALLEL TESTING

The restriction that no test be commenced before the previous results are known is an artificial
restriction for most personnel selection situations. If time, and hence money, can be saved by running
several tests simultaneously then this option should also be investigated. If it is financially important
for a firm to fill its vacancy (or vacancies) as quickly as possible (that is, y is large), then it will become
more cost efficient to run several tests in parallel. Depending on the value of ¥ and the set up costs,
this does not necessarily mean that all the tests should be started at the outset. We therefore turn to
the problem of approximating the optimal testing program.

A. The Size of the Problem

Here we drop Assumption 4 and allow several tests to be "run" at the same time—for the person-
nel selection situation a test is "running” as long as its result is still pending—the actual active part of
the test, as far as the candidate is concerned, is considered negligible. In other words, we consider
situations in which processing and making the results available to the employer take considerably longer
than the administration of the tests themselves. People involved in personnel selection are well aware
of these procedural delays. To get some idea of the size of the problem, we first consider how many
possible arrangements of the » tests exist when an arbitrary number may be conducted at the same
time. The optimality problem is significantly simplified by the observation that there is no point start-
ing a particular test when no other test is finishing—the fixed costs being incurred in any case—and. in
the interest of minimizing delay, one might as well advance the start until the end of the most recently
completed test.

The various possible configurations can be represented by trees. For example, for n = 3 tests,
consider three possible configurations

T2 T3
,__E__< Tl
W T T: (i)

time
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The first configuration (i) indicates that test T, is started first, followed simultaneously by T; and Ts;.
We can use the length of lines to indicate the relative durations and label nodes by the number of the
test just completed, using 0 to indicate the time origin. The above configurations are then represented
by the foilowing three trees: |

The number of such trees is given by T(n) = (n+1)"~! which corresponds to the number of
configurations of n tests (see Harary, (5] chapter 11) and for n = 3 there are 16 such possible arrange-
ments.

For the testing situation there may be somewhat fewer possible arrangements if the "branch dis-
tance" from the origin is the same for two different nodes. For example, if d; = d; then

1
2 3
0( " <
3 1 3
are effectively equivalent as far as deciding when to start T,.

To obtain a lower bound 4 (#) on the number of effectively different configurations, we consider
the case when all the tests have the same duration. It is not hard to see that the following recurrence
relation holds:

A(n)="_zl[;'.lm). 40) = 1.

J=0
Some values of T(n) and A (n) are given below:
n 1 2 3 4 s 6
T(ry 13 16 125 1296 16807
A(n) 1 3 13 75 541 4683 .

In any given situation with n tests of possibly different duration times, the number of different arrange-
ments will be between the two numbers 4 (n) and T(n).

Seeing that finding the optimal arrangement by complete enumeration quickly becomes prohibi-
tive, we now suggest some heuristic algorithms to provide good suboptimal schedules. The efficiency
of the algorithms is discussed for some simple examples—a more thorough investigation, possibly using
the sampling approach of Dannenbring [4], being postponed at this stage.

B. Single-Step Check Algorithm

Using the notation of Section 2 we describe the algorithm as follows:

()  Order the tests according to (a,/p,) values as in the sequential case. Assume the resulting
orderis (T, ..., T,).
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(I) Compare the expected costs up to the completion of all tests 7y, ..., 7, when T, is
started at the last node of the current configuration of (T, T, ..., T;_;), with that
incurred if T; were started simultaneously with the most recently started test. Choose the
configuration with the smaller expected cost and then proceed to consider 7,,, similarly,
until all »n tests have been scheduled.

The number of comparisons required is n — 1; a typical succession of steps for n = 5 may appear
as follows:

2 4 4
4‘ 2 .4.__3 fs .%—5
01 0 1 0 1 1 3
(i) (ii) (iii) (iv) (v)
Note that moving from stage (ii) to (iii) the tree

/2,3

1

(3) 0

is not considered according to (II) above. We could have considered the single step procedure which
would at each stage compare trees such as (3) with that chosen (iii). However, this latter algorithm has
the disadvantage of not being able to potentially produce both the purely sequential as well as the com-
pletely simultaneous schedules (unless all tests are of the same duration). It seems more important to
consider single-step check procedures that can take in both extremes as against those that do not skip
possibie starting nodes (such as occurs when (3) is missed). If the durations d; are all equal (say 1
unit) then the above mentioned variations of (II) are equivalent.

In fact, the required comparisons can be made quite simply when 4, = 1, for all i. Note that since
the tests are run in parallel and 4, = 1, only the fixed cost, ¢;, of the test need be considered. Without
loss of generality we take k = | here and in the sequel. At stage i we have typically

i—1

T 7+l

where 7, 7+ 1 denote units of time from the origin. Suppose the probability of reaching = is denoted
by (1—m,). If T, is started at 7 then the relevant contribution to the expected cost up to time v + 1 is

(4) I~-am) (g +...+c_ +c+1)

whereas if T, is started at time = + 1, it is

(5) (M=7m) e+ ...+ D+ U =7 )+ 1)
Comparing (4) and (5) we decide to start 7; at

rifc,<m((‘,+l)
| —m,
(6)

(1 _77,4,1)

r+1if¢ >
1 -,

(¢, + 1)
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1 —m,
where, clearly, # =(-p_)... A0=p_)).

For this situation we see that the comparisons can be made quickly and sequentially with a
minimum of data to be stored.

The systematic application of the algorithm when the 4, are different will now be described. Sup-
pose we are at stage i/ and wish to determine where to start test 7,. Suppose that A denotes the time of
the last node so far and v the time of the most recent start (i.e., the time at which 7,_, is commenced).
Define the following quantities:

C, — expected cost up to time A (7; excluded);

C, — expected cost up to time v,

r  — number of tests commencing at v (including T});

s — number of tests commencing or in progress at time v;

vy, vy ..., v, — indices of test: commencing or in progress at time v,

Ry < R, < ... < R, — time lefi to completion of tests v, ..., v, respectively:

r
K=Y% ¢ - fixed costs of starts at time v;
j=1

1 — =, — probability of getting through all tests up until time ».
Note that the index i is among the indices vy, ..., v;.
Now if T; is started at time A then the new expected cost is
) c;=q+{'ﬁ(1—p,)] (c, + d)
j=1

with the remainder of the updating as follows:

M=A+d,v'=AC/=C, r'=s5"=2{uv, »=1{ii+1),

R{=min(d, d,), Ry =max(d, d)), K'= ¢, + ¢c;yy

1—1r,,='ﬁ(l—pj).

j=1

If 7, is started at time A then the new expected cost is
(8) G=C+U~m)K+p R+ U-p)p, Ry+...+U=p)...(0=p, IR
with the appropriate updating determined by:

MN=v+R,v=v, C=C,r'=r+1,s'=s+1, K'=K+c¢y, 7 =m,

and d;,, being inserted into its correct place among R, ..., R to give the new indices v/, ..

N
. . ! '
and residual times Ry, ..., R/,

At each stage i the smaller of (7) and (8) determines the appropriate scheduling of 7; and the
appropriate updated quantities to proceed to the next stage.
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C. Multistep Check Algorithms

At the expense of considerably increased computational effort the single-step check algorithm can
be extended by considering starting test 7; at several nodes in the existing configuration at stage i.
There are at most i possible starting nodes so that if each one of these was investigated at each stage i,
at most n(n + 1)/2 different configurations would be considered.

For example, one might start by considering a two-step check procedure which would involve
comparing the merit of starting, at stage i, 7; at either the last node or one of the last two starting times.
The algorithm would require storing considerably more information at each stage. However, there is no
guarantee that the final schedule will be superior to that produced by the single-step check procedure.

Indeed, due to the serious interactive effect of paraliel tests on the cost structure, it is not possible
to conclude that any multistep procedure will always do better than a one-step procedure. This is
because on adding 7,, we may be better off with some T; starting at a node determined by the one-step
procedure than at the node to which it was allocated at stage / by the multistep procedure.

We therefore do not look further at the multistep check algorithms in this paper, although their
accurate description still poses an interesting and possibly important problem.

4. NUMERICAL EXAMPLES

EXAMPLE 1.
Data: n=3
ileg 4 Di a; alp
1 1 1 25 2 8
218 1 ) 9 90/7
K 1 2 3 15

ALGORITHM: We note that d;= 1, i =1, 2, 3 so that we may use the criterion (6) at each
stage.

(1) Starting order is 1, 2, 3.
(2) Start Tyat0if c; < (1—=p)) (cy+1) = (75)(9) = 6.75.

Hence, we start T; at time 1 and the configuration stands as

-— .

0 1 2

(3) Start Tyatnode 1 if ¢; < (1—py) (c3+1) = (3) (3) = .9,

Hence, we start T3 at node 2 and the final configuration is

o 1 2 3

with total expected cost 9.425
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The optimal configuration is actually

with a total expected cost of 9.4. We note that a two-step check procedure would have given us this
configuration but that the one-step algorithm gives a very nearly optimal schedule. Here we also have
an example of a case for which the optimal parallel testing schedule involves inversions of the testing
order for a sequential schedule (viz. starting T, on the completion of T;).

EXAMPLE 2.
Data: n = 3
i | ¢ 4 p a alp
171 1 32 20/3
2|4 3 6 7 35/3
311 2 23 15

ALGORITHM: We use the algorithm outlined by equations (7) and (8). The initial order is
azain 1, 2, 3, so that stage (1) consists of starting T} at 0. We now tabulate the relevant quantities
defined in the previous section for stages (2) and (3), explaining the calculations below.

A v o r s {vj} [Rj} K 1-o, C, C,
2 1 0 2 2 1,2 1,3 5 1 0 2
3 4 1 2 2 32 2,3 5§ i 2 69

Stage 2: According to (7) G/ =2+ (77=69
Accordingto 8) C/ =0+ (D{5+ (31 +.73)} =174

We therefore update according to equation (7).

Stage 3: According to (7) C, =69+ (7)(4)(3) =774
According to (8) C/ =2+ (N{5+ (2)2+ (%) 3} = 7.46

We do not need to update the quantities further. The tree has developed as follows:

N (2) (3)

The algorithm does produce the optimal configuration in this case, with total expected cost 7.46.

CONCLUSION

We have proposed an approach to personnel test sequencing which is based on cost effectiveness
rather than predictive ability. Once a company has decided on which tests are required to determine job
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suitability, then their application may be done more efficiently by considering the sequencing algorithms
discussed above.

It is clear that a major area of application lies in recruiting for specialized jobs in the government
or the armed forces. Here, investigating the various facets such as security, health, intelligence and
personality typically involve high cost and delays. Moreover, information is commonly available on the
a priori probability that an applicant will meet the required standards in each area. We suggest that the
ideas presented here will help make the screening of applicants more efficient, either by implementing
the algorithms herein described or by encouraging the development of related ones.
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THE VARIANCE OF THE COVERAGE OF A RANDOMLY
LOCATED AREA TARGET BY A SALVO OF WEAPONS

Gerhard Schroeter

Industrieantagen-Betriebsgesellschaft mbH
Ottobrunn, Germany

ABSTRACT

We derive formulas for the variance of that proportion of the value of a ran-
domly located, circularly symmetric area target that is destroyed by N indepen-
dently fired weapons of identical type whose damage functions are circularly
symmetric about the respective impact points. The probability density func-
tions of the target center location and of the weapon impact points are also cir-
cularly symmetric. The general results are specialized to uniform and Gaussian
functions. In the latter case a closed-form solution (triple integral} for the vari-
ance of the coverage is derived. Similar to some well-known results on expect-
ed coverage, this expression for the variance of the coverage can be easily
evaluated by numerical quadrature. Numerical resuits are given which indicate
the targe! coverage variability caused by the combined effects of random
target-locating errors and weapon impact point fluctuations.

INTRODUCTION

Two-dimensional coverage problems arise frequently when assessing the effectiveness of artillery
or air-to-ground weapons. The surveying papers of Eckler [5], Eckler and Burr [6], Guenther and Ter-
ragno [16] show that there are many papers concerned with the expected coverage of an area target by
multiple independently fired weapons. This reflects the importance of knowing the average
effectiveness of weapon systems. However, in military requirements another criterion is often used:
The measure of effectiveness for a salvo of N rounds is the proportion € of the total value of an area
target that is destroyed with a probability of at least y. Expected coverage. obviously, does not supply
such information, even though, of course, a higher expectation of destroyed value generally increases
the confidence level y for any given € (or vice versa). What would be required in the case of an e-y-
criterion is not only the expectation of the destroyed value or coverage, but the distribution of the cov-
erage. In sharp contrast to the bulk of papers on expecied coverage, only very little literature is avail-
able on the distribution problem. Domb {4]. Siegel [34] and Votaw [38] have calculated distributions
of the coverage for arbitrary numbers of covering objects N 2 1. they, however, treat only one-
dimensional coverage problems (line segments and circular arcs), and their methods do not seem appli-
cable to area problems. Solomon [35] derives in two dimensions the distribution of the destroyed value
of an area target by one weapon only and gives some upper and lower bounds for y {given €) in the
case of two weapons. Several authors have derived expressions for the higher moments (especially the
second moment) of that fraction of a fixed geometrical target figure or body which is covered by N ran-
domly thrown figures or bodies (Ailam [1], Bronowski and Neyman [2], Garwood [13], Greenberg
{15], Moran and Fazekas de St. Groth [24), Robbins [25] and {26], Santaié {27]). The principal result
obtained in this connection is due to Robbins {25]. Others (Cooke [3]. Edens [7], Flatto [8], Flatto
and Konheim [9], Flatro and Newman [10), Gilbert [14]. Holst {18] and (191, Kapian {20} and [2].
Miles [23]. Shepp 132}, Siegel (331, Steutel (36], Sizvens {37]) estimate the probability :hat the
randomly thrown figures cover the fixed target figure completely, or estimate the number of figures
required to cover the target figure completely.
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98 G. SCHROETER

From all these results, those on the second moment of the coverage in the space of two or more
dimensions are the most interesting with respect to weapon analyses. Although the second moment (or
the variance) does not supply the precise information that is required for the e-y-criterion, it is
nevertheless useful, since Tchebyshev’s inequality can in some cases yield a lower bound for ¢ (given
v) or y (given €). The papers cited, however, are confined to one situation; this limitation results
partly from modeling the coverage problem as an overlap-of-geometrical-figures problem. In weapon
analyses terms, it is: (1) The only targets considered are those with sharp edges and uniform value den-
sity. (2) The only weapons (randomly thrown figures) are those with zero-one damage functions; com-
plete destruction occurs within the weapon effects area, and no destruction without. (3) The weapon
impact points are assumed to be distributed uniformly within a specified area. For most applications,
these three assumptions could be accepted as more or less good approximations of the real world.
However, one limitation is a serious drawback, which reduces the usefulness of the former resuits on
the variance of the coverage: (4) The target position is not a random variable, or in our words: The tar-
get location error is zero with probability one.

It is the objective of this paper to derive expressions for the variance of the coverage in more gen-
eral situations so that limitations (1) to (4) are eliminated. First, we generalize Robbins's [25) main
result on the moments of the coverage of geometrical figures to randomly located targets with general
value density function. Second, we consider a coverage problem in which all underlying functions are
Gaussian, and derive a closed-form solution (triple integral) for the variance of the coverage. In this
Gaussian case the standard deviation of the coverage can be determined in little computer time by
numerical quadrature so that a parametric analysis can be made. Numerical results will be presented
which clearly indicate the variability of target coverage caused by the combined effects of random
weapon impact point and target location fluctuations. As a side result, we generalize a formula of Gar-
wood [13] and Santald [27] for the variance of the coverage of one circle by N other circles.

The concepts of the Gaussian target and the Gaussian damage function have been considered in
many papers (see, e.g., Fraser [11) and [12), Eckler 5], Eckler and Burr [6]), dealing with problems on
expected coverage; the main advantage of this model—beyond its intuitive appeal as an approximation
of real world situations—is that many problem solutions can be given in closed form which is not possi-
ble when corresponding problems with other functions are considered. This same property will ulti-
mately be used to derive the triple integral expression for the variance of the coverage of the normally
located Gaussian target by warheads with Gaussian damage functions and normally distributed impact
points.

1. THE COVERAGE PROBLEM
Target Value and Location Distribution

We consider—on an x-y-plane, where x, y are Cartesian coordinates—a circularly symmetric area
target whose precise position is not known because of a random locating error (see Figure 1). We
assume that the probability density function (p.d.f.) f,(x;, yr) of the coordinates of its center is
known, and that f,(x;. y;) is circularly symmetric with respect to the origin O of the x-y-coordinate
system, so that f; (xr, v7) = fl(x? + y$)V2. The point O is the expected target center location.

The area target value need not have a uniform density; for many applications it has proven useful
to consider the concept of a nonuniform target value density function w,(u, v) as done, for example,
by Eckler {S], Eckler and Burr [6], Helgert [17], McNolty [22], Schroeter [28], {291, (30], {31], and
Washburn [39]. The function w,(u, v) need not be greater than or equal 1o zero, although in the
usual applications it is. Our following results will apply to any value density function that is absolutely
integrable over the w-v-plane, and circularly symmetric with respect to the center T of the target, so

that w,{(u, v) = wl(u? + v})V?) within a u-v-coordinate system whose origin is at T.
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FiGure 1. Coverage of circular target by 4 ‘cookie-cutter’ rounds

P.D.F. of Impact Points of Weapons

In the following we consider a salvo of N identical rounds. We assume that the weapons are
aimed at the origin O of the x-y-plane, the expected location of the target center. (Aiming all weapons
at that point will not necessarily maximize the expected target value destroyed.) Because of random
delivery errors, however, the weapons will not impact at O, but at points {,{x;, y;), j=1, ..., N,
more or less dispersed around O. We consider the set of impact points as a sample, randomly and
independently drawn from a population with the known p.d.f. k,(x, v) which is circularly symmetric
and centered at O, so that k (x, y) = k[(x? + y)'?],

Damage Function of Weapon and Coverage of Area Target

We introduce a Cartesian &-n-coordinate system whose origin is at the impact point of a weapon.
| We assume that the effectiveness of the weapon can be adequately described by a circularly symmetric
damage function d, (¢, n) = d[(¢? + n?)"?], with 0 < d, (£, ) < 1. This function has the following
: interpretation: The value of that element of an area target which lies at the point with the coordinates
l &, m is reduced by the factor 1 — d, (£, n). This implies that the value density of the target remaining
after the bombardment by the weapon is w{' (u, v) = wy(u, v) [1 — dy(u — £, v — )], wherein
£7, mr are the target center coordinates in the ¢ — n-coordinate system, or the weapon impact point
coordinates in the wv-coordinate system whose origin is at the target center. (This property also
applies to any noncircularly symmetric functions w, and d,, if only the axes of the w-v-and the ¢-9-
coordinate systems are respectively parallel. The superscript in parentheses indicates the number of
weapons considered.) Hence, the total destroyed value (or coverage) C'"'(£;, my) is the following
functional of wy and d;:

) C"™eromp) = f:o f_: wolu, Vd(u — €. v~ nr)dudv

= [ wite—€r m— mpdete. mdtan,

This is the two-dimensional convolution of the two functions w,(u, v) and d,(-¢. —-x). or
wy(—u, —vi and d, (¢, ).
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If both, w, and d, are the "cookie-cutter" functions for the two geometric figures % and 2,
respectively, (i.e., when they equal one within % and 9. respectively, and zero without), then
CM& 1, m7) is the intersecting area of % and @. This is, of course, the usual definition of the cover-
age of one geometric figure by another. Using (1), one can immediately generalize this concept to
more general targets and damage functions, and this definition has been applied in all papers where
nonuniformly-valued area targels have been considered.

Coverage of Area Target by Multiple Weapons
Remember that the target center and weapon impact points coordinates in the x-y-coordinate Sys-

tem are xr, yr, X1, Y1, ..., Xy, Vn, respectively. The coverage of the target by all the N weapons then
is the following function (cf. Schroeter [31], Equation (6)):

o oo N
(2a)  C™'(xp, yro X1 Yy ooy X ) =K -f_wfim welx—xp, v —yp) [T = dy(x = x,, v~ y,)axay,

=1

wherein K is the total value of the target, K = f f welu, vdudv = 21rf w(t)r dr. Define

C = '™ and denote the not-destroyed value K-C by C. (The complement of the destroyed value or
coverage is sometimes termed "vacancy" (Ailam [1], Holst [18])). Define d,(¢. n) = d[(£2 + »?)?] =
1 —d, (£, n). Then

_ = oo N _
(2b)  Clxp, yr, X1 Y1, oon s Xy yN)=f—oof—oo we(x = xp, v=vr) [Tds(x=x;. v~ y,) dxdy.

=1

Considering the target center and weapon impact point coordinates as random variables, we will deter-
mine the variance of C, which is the same as the variance of C.

Coverage of Area Target and Probability of Killing a Point Target

In this paper, we will not go deeper into the analysis of point targets. It is, however, interesting
to relate the concept of the coverage of an area target with the probability of killing a point target, since
this will enable us to generalize, in Section 2, a theorem of Robbins [25] on the relation between the
moments of the not-destroyed value of the area target and the probability of killing none of several
point targets. This theorem has been applied by several authors to calculating the second moment of
the coverage (as done, for example, by Garwood [13]).

Consider a point target which will either survive an attack by a weapon or be killed. Define
d, (€, m) to be the conditional probability of killing the point target provided it has the coordinates £, 7
in the coordinate system whose origin is at the weapon impact point. If the point target is located ran-
domly round the point T(£r, m7) according to the probability density function w,(u, v}, then
C“’(§7. n7y) as defined by (1) is the unconditional probability of killing the point target. (This proba-
bility is unconditional with respect to the random location of the point target round T it is a conditional
probability with respect to the location of T itself.) Evidently, C'") = C as defined by (2a) equally
yields the probability of the randomly located point target being killed by at least one round of the
salvo. Hence, the concepts of coverage of area target and probability of kill of point target are
equivalent, when d, is interpreted in the dual form, as done above, against point and area targets.
Also, when x7, yr. x|, ¥|. ..., Xy, yy are considered as random variables, then the expectation Ec of
the destroyed value of the area target equals the totally unconditional probability of killing the point tar-
get. This equivalence is well-known (see, e.g., McNolty [22], Schroeter {28] and [31]).

I am indebted to the referee for having pointed out the following interpretation: Let X denote an
indicator variable for the kill of the point target. i.e., X = |, whenever the point target is killed, and
X = 0 otherwise. Again, let w,(u, v) be a probability density function. Then C'™' = C from (1) and
(2a) equals the conditional expectation of X. Similarly, E. equals the unconditional expectation of X,
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Ey. Since X is either 0 or 1, its distribution is completely known whenever Ey is. Especially, the vari-
ance of X, o #, equals Ex(1 — Ey). Thus, nothing would remain to say on the variance of the coverage
if such were the problem to be analyzed in the present paper. Instead, what we are addressing could be
described, somewhat loosely, as a target consisting of an infinite number of point targets, their fre-
quency round T being proportionate to the density function wy (4, v), and C*’ from (1) and (2a)
denoting the fraction killed. The variance of that fraction, o, generally is less than E-(1 — E¢).

2. MOMENTS OF NOT-DESTROYED VALUE
The mth Moment of the Not-Destroyed Value

The mth moment of the not-destroyed value Cis

oo o - o N -— m
(3a) Epn=f o S it —xr v =90 T dutx = x,, » = 3y
j=1
N
ﬂ(XT, yr) H kA (X/, yj)erddexldyl dedyN‘
Jj=1

We write the mth power of the inner double integral with respect to x, y as a repeated 2m-fold integral
and interchange the order of the integrations. This is allowed since the integrand is an absolutely
integrable function of each of its arguments. Thus, we obtain

oo oo m N m
Ezp= f_m ...f_w Salero yp) TT wa € = xro mi = vp) T] kaOxn 9) TT da € — x50 1= )
=1 =1

j=1

dx\dyy ... deydyndxrdyrdéydn, ... d§,dn,.

The inner repeated integral with respect to xy, ¥y, ..., xy, Yy may now be written as the Nth power
of a double integral, so that
00 o m
(3b) Egm"f_m---f_mf,d (xr, yr) qu &= xr, mi—yp)
i=
N

f_:f; k€, ) ]]EA (€,— &, m;,—n)dEdn| depdyrdEdn, ... dE,dn,.
i=1

m
The integral of £, (xr, yr) J] wa (& — xr, m; — yr) with respect to xr, yr is completely analogous to
i=1

the integral of k, (¢, ) HEA (£, — &, n, — m) with respect to ¢, 5. This suggests the following func-
i1

tional be defined:

(@) OnlEr i o b Imi K 54)=f_:f: kq(€.m) ’ﬁ&(&*& n;=n)dEdy,
which implies

(5) f_: f_: Jalxr, yr) f[l wel€, ~ xp. m, — ypdxrdvr = Q&1 m1s vy €y Nt Sao Wa).

Using (4) and (5) we obtain for the mth moment of the not-destroyed value as an alternative form of
(3b):

(3¢) E@,.,=f_: f_: On€r M1 o ovs &y M Sao Wo)
ON(EL, My v Eme Mms Kav dg)dEdm, .. dE dn .
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This shows that Eé,,, is an integral of a product, whose second factor is independent of the target value
density function and the target location error p.d.f.; this factor contains all information on the weapons
and on the p.d.f. of their impact points. The first factor contains all information on the target and its
location error, and is independent of damage functions and impact point p.d.f.’s.

The usefuiness of {3b) in contradistinction to (3a) will become apparent when we consider the
second moment, at the same time taking into account that, in real situations, the number of weapons N
fired in a salvo generally is much greater than 2. Both, in (3a) and in (3b), the inner integrals are dou-
ble integrals; the outer integrals are (2N + 2)-fold in (3a) and (2m + 2)-fold in (3b). For N > m,
therefore, a reduction of the number of integration processes is possible by using (3b) instead of (3a).

Interpretation of the Functional ,,

For m > 1, @, does not satisfy the commutative and associative laws for its argument functions,
such as the ordinary convolution does. It has, however, a statistical interpretation similar to that of the
convolution: Let w, (€, 1) and f((x, p) be two p.d.f’s. Then O, (€. My, ... Epms N Sas Wy) is the
joint p.d.f. of the coordinates &;, n; of m points B, i =1, ..., m, which are located randomly and
independently according to the p.d.f. w, around a common center T which, for its part, is drawn ran-
domly from the x-y-plane according to the p.d.f. f,(x, »). Another interpretation results from (2b);
evidently

Clxz, yr, X1 V1o ovov Xno Y3) = OnXp = X1, Y1 = Y1 ooy Xp = Xy, D7 — VNS Wa, dy).

Robbins's Theorem

An examination of (4) will show that Q,,(¢,, ;. ..., &, M k4. d,) is the probability of killing
none of m different point targets, located at the points B;(£,, m,), by a single round whose damage func-
tion is d, and whose impact point p.d.f. is k, (€, ). Hence, QN (&, my ... €Ems Ny kas dy) is the
probability of killing none of these point targets by a salvo of N identical and independent rounds.
Interpreting, as in the section before, 0, (€,. My, ..., Ems My f4, Wyq) as a joint p.d.f., we see from
(3c) that the mth moment of the not-destroyed value of the area target, E(—.,,,, equals the unconditional
probability of killing none of m randomly located point targets—which are distributed according to the
p.d.f. w, round the common randomly located center T—with the salvo of N rounds. This is the gen-
eralization of Robbins’s [25] result on the moments of the coverage of a fixed geometrical figure by
randomly thrown figures to the coverage of a randomly located target with arbitrary value density func-
tion by weapons with general damage functions. Evidently, these results equally apply to coverage
problems where the underlying functions are not circularly symmetric.

Expressions for the Second Moment

Because of the assumed circular symmetry of w,, f,. d,. and k. the integrals
0:(6 m. €22 fu. w =~ f _ f_w S I wley — & m ~ wely = £,y — m)dédn,
0x6r m. E2mp ke d) = [ [ kate, md (6, ~ €. my ~ A&, — &, my — WdEdn

depend only on the relative positions of the three points O (0, 0), B, (£, n,), and B,(¢; m3). There-
fore we may, without loss of genr-ality, express them in terms of the three parameters t, f;, 8 whose
geometrical interpretation is indicated in Figure 2. A routine manipulation then yields for the second
moment of the not-destroyed value:

% o0 n -
(6) E.,= 21rf0 S S 0ttt 00 wIQY (1, 1y 0k, @ ni0yd6dndey,
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wherein
- o« n -
0,1y, 15, 03 k @) =f0 [ k@adle+ 2 = 271, cos)?]
dllr? + 1} — 271, cos (6 — DIV rdedr,

and the analogous relation holds for Q,(¢,, #,, 8; f, w). If we change from ¢, 1, 8 to x, y, p by
means of ¢, = [(x + p)2 + y21¥2 1, = [(x — p)2 + y?1V2, g = arctan [(x + p)/y] — arctan [(x — p)/y],
the Jacobian is 4p/(r,1;). (The geometric interpretation of x, y, p also is indicated in Figure 2.)
Hence,

) Eq,=8m f_w f_w fo 0:(x, y. 03 fu, w)OY (X v, pi ki, dydp dpaxady,
wherein
(8) 0:(x. v pi ke a0 = [ katu=x v=3)du — p, V4 (u +p, Vdudv,

and the analogous relation holds for Q,(x, y. p; f4. w,). Considering that d; = 1 — d,, (8) may be
transformed into

(9) Qz(x, » ps kA, (7,4) =1]- Ql(’l; k, d) - Q|(12', k, d) + Qz(x, Y, p, kA, dA).
wherein
oo 2n
O\(t. k, d) = fo fo k(Pdl(r + r2 = 2ir cosd)r didr.

FIGURE 2. Definition of . f,. ¢
and x. v. p

3. SECOND MOMENT IN SPECIAL CASES: GAUSSIAN AND UNIFORM FUNCTIONS

Gaussian Damage and Impact Point Probability Density Functions

We consider the circular-Gaussian damage function d,(u, v) = expl— («? + v3)/(20'})], with the
shape parameter o . Furthermore, we assume that the impact point p.d.f. k,(-, *) is circular-normal,
with the standard deviation o. [t follows immediately from the convolution property of Gaussian func-
tions that Q,(r: k, d) = ¢} (a2 + o §) ! expl— 1¥/(20? + 203)]. The function Q,(x, y, p; k4, d,) can
also be written integral-free. A routine manipulation results in

0y(x, 3. p; ky, dy) = Qua?)'exp(—p¥a})

f,: f_: expl— (u? + v))/oBlexpl— [(u — )2 + (v — )/ Qo)) dudv.

VOL. 29, NO. |, MARCH 1982 NAVAL RESEARCH LOGISTICS QUARTERLY




104 G. SCHROETER

We recognize the double integral as the two-dimensional convolution of two Gaussian functions, so
that this integral can be expressed as a Gaussian function of x and y. Consequently:

11} 0,(x, y, pi ky, dy) = c3Qa? + o) lexpl-pYoh — (x2 + y2)/ Qa2 + o).

Gaussian Target Value and Location Probability Density Functions

For a Gaussian target with the total value of one and the shape parameter o, we have
wqlu, v) = Qmo ) lexpl- (2 + v)/(Q202)]. Let the p.d.f. of the coordinates of its center be
circular-normal, with the standard deviation o;. Then, quite similar to the above case,
Qi(t; f w)=[2nlo} +ad]) expl-t¥ Qo2 + 20#)] and

an 0,(x, 3, p: f4, wa) = [dn203Qa? + oD lexpl—pYod — (x2 -+ y2)/ Q0 + o)l

Combining these value density and location p.d.f.’s with the Gaussian damage functions and the normal

impact point p.d.f. will, for the expectation of the not-destroyed value, yield
N

p
ThH 1

,2
—_— l-———exp|- —————— t dr
2(o%+a§)]{ o+ o} pl 20+ 0}p)

(12) Ez= (o} +od)! fow exp [—

Observing (9) and inserting (10) and (11) into (7) will, for the second moment of the not-destroyed
value, yield a triple integral with respect to x, y, p. Then, a change to polar coordinates by x = r cos¢,
y = r sin¢ will finally result in

13) Exy = ——8———)1: fow exp

2 2
-L__ 1,
7030} + o2 o} 20%

+0'%

w2 202 24 2
fo 1 - — 2 5~ exp [— ptr ] cosh |£L=59 cosé
a

+o 2+ ap) ol+a}
N
ah i 2
exp |- - dodrdp.
202+ o} P o} 20+ o} ddrdp

The integrals (12) and (13) can be solved in closed form, by developing the Nth powers and integrating
the sums term by term. Practically, this is of little interest, since the complexity of the integrands is
prohibitive for large N. (12) and (13), however, can be computed easily by numerical quadrature for
arbitrary values of V.

Coverage of Fixed Circle by Randomly Thrown Circles

In this section we apply our main resuit of Section 2 to generalizing results on a circularly sym-
metric coverage problem considered by Garwood {13] and Santalé {27]. These authors caiculated the
second moment of the coverage of a fixed circle (radius Ry) by N identical, randomly thrown circles
(radius a) when the centers of the latter are distributed uniformly over a circle with radius Rp. The
centers of the two circles with the radii Ry and R, coincide.

The damage function d(z), in this case, is |1 if 7 < a, and 0 else. We denote by k,(u, v) the
uniform p.d.f. over the circle with the radius Rp,. Then wR3Q,(1; k, d) is the intersecting area
S\(r; Rp, a) of the two circles with the radii @ and Rp whose centers are the distance ¢ apart. Further-
more, mRAQ,(1), 1, 8: k, d) is the intersecting area of the three circles with the radii Rp, a. a, and
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the centers at the corners O, B, B,, respectively, of the triangle indicated in Fig. 2. We denote this
intersecting area of the three circles mentioned by S»(1;, 1, #; Rp, a) and, using (9), obtain

(14) Qz(!l, t, 0k, 6_1) =1- (ﬂRDZ)_l[S,(!); RD: a) + 51(12'. Rp. a)~ Sz(h, ty, 0. Rp. all.

Next we consider the target whose value density is one within a circle of radius Ry, and zero without.
We assume that this target is centered, with the probability one, at the point 0(0, 0). In this case
0,(11. 12,8 f. w) = 1if t; < Ry and 1, € Ry, and 0 otherwise. Hence (6) yields

RT RT n —
E., = 21rf0 fo fo OY (1, 13, 05 k, d)ty1,dOdiydty.

Combining this with (14) results in the second moment for that proportion of the fixed circle which is
not covered by the N randomly thrown circles of radius a:

R R 2
(15) Ep=2n [ 7 f7 (1= @RS (1 Ry, @) + S1(13: Rp. @)

- Sz(ll, ), 8; RD' a)]}l\‘hlzd‘)d!]dlz.

This is the generalization to arbitrary relations of Ry, Rp, and a, of results of Garwood and Santalo,
who considered only the case Rp — a 2 Ry. In the latter case, (15) may be reduced to a one-fold
integral; a short manipulation results in

R, .
Eqp=12m fo S,(zi Ry, RO — @RR) ' [2ma? - S,(z; a, all}adz,
which is an alternative form of Garwood's Equation (43) and Santalé’s Equation (5.3).

4. NUMERICAL RESULTS FOR GAUSSIAN FUNCTIONS

Equations (12) and (13) were evaluated by numerical integration, and the standard deviation o ¢
of the destroyed value was determined by means of the relation okt= xr}. = EE’ - (Eg)z. In all cases

we assumed oz = |. Figure 3-6 show in the Ec—o(-plane the two families of parameter curves
o = const. and N = const. for op = 0.1 and 0.2, o = | and 3. Many practically important cases fall
within the range of these parameters.

Discussion of Results

The figures indicate that, for o < 1, the standard deviation of the coverage is so small that the
one-sided Tchebyshev inequality P (Ec —~ ag¢ < C) = o% (1 + a?) may be well applied to deriving a
confidence level for the minimum destroyed value. Take, e.g.,o0p=0.1,0=1,07=05, N =250
rounds. It can be seen in Figure 3 that E- = 57%, o¢ = 5%, so that the coverage is with a probability
of at least 90% greater than 42%. For oy >> 1, however, Tchebyshev’s inequality will be of little
value for our problem.

We see that, for increasing o 7 and N, the standard deviation of the coverage o approaches its
theoretical upper bound on the circle with the equation o% = E-(1 — £;). This circle is drawn as a

dashed line. This property implies that the probability mass concentrates more and more near C =0
and C = 1.

Numerical Method

The integrals (12) and (13) were evaluated by a Gauss-Legendre quadrature. For (13), generally
243 supporting points were used. For special values of the parameters, 32} supporting points were
chosen. With a Fortran program, on a CDC 6500 computer approximately three seconds of central pro-
cessor time was required to determine one value of o with 243 supporting points.
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FIGURE 3. Standard deviation of coverage vs. expected coverage. o, =0.1, 0 = 1.

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 29, NO. i, MARCH 1982




VARIANCE OF RANDOMLY LOCATED AREA TARGET COVERAGE 107

0.5

ge O, o
T

o
ind

Standard Deviation of Covera
o
il

|

01

0.5
Expected Coverage E

FIGURE 4. Standard deviation of coverage vs. expected coverage. ap = 0.1, 0 =3
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FIGLRE 5. Standard deviation of coverage vs. expected coverage. o, =02, o = L
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REFORMULATING ZERO-SUM GAMES
WITH MULTIPLE GOALS

Edward L. Hannan

Office of Health Systems Management
New York State Department of Health
Albany, New York

ABSTRACT
This paper investigates the two-person zero-sum multipie payofl game in
which the objective is to minimize a player's total underachievement from a

fixed set of goals. It is demonstrated that a previous formulation of this prob-
lem can be substantially simplified.

1. INTRODUCTION

In a previous paper in NRLQ, Cook [1] discussed the formulation and solution of a two-person,
zero-sum game with multiple payoffs in which the objective is to minimize the total underachievement
from a fixed set of goals for each of the objectives.

The resulting formulation is
(N min B

x€y, 8

subject to

M=

xA;(r) -8B < 0Vjrix €y

1

where player 1 selects strategy i with probability x;,
X=1(nx3 ..., x,)

m

Xx=1X=1(x, ..., x,) Y x=1x 2 0Vi

i=1
K .

Alr) = Y Ak}
k=1

.t .

At = (a)f) = (g5 = af)

K is the number of objectives

i is the index for player 2’s strategies

£*  is the goal for the kth objective
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a,f is the payoff for the kth objective corresponding to player | choosing strategy / and player

2 choosing strategy j
A, (r) is the ijth component of 4 (r)

a* is the set of extreme points of ¢

r=1, ..., Risthe index on the extreme points of .
wX = the relative weight placed on the kth goal.

This is a linear programming problem. After calculating the 4 (r) matrices, the problem involves
the minimization of a linear function subject to m(2X — 1) + 1 constraints where m is the number of
strategies available to player 1 and K is the number of multiple payoffs. Also, the calculation of the 2K
A (r) matrices prior to solving the problem can be quite time-consuming.

The intent of this paper is to demonstrate that the same problem can be solved by minimizing a
linear function subject to n(K + 1) + 1 constraints, where n is the number of strategies available to

player 2. Also, only K matrices must be calculated prior to the solution of the problem rather than 2K
matrices.

2. A NEW FORMULATION

Letting a,’j- represent the kth payoff to player 1 if player | chooses strategy / with probability x;,
m

i=1, ... m, and player 2 chooses strategy j, j = 1, ..., n, it follows that 2 a,ﬁix, is the kth payoff to

i=1
player 1 for this combination of strategies.

Thus,

m
k k
08— Y afx

i=1

df = max

is the underachievement of goal k (¢¥) corresponding to this strategy combination.

m
But d¥ = max [0, Y (g% - af)x,

i=]

m
since g* is constant and ¥ x, = 1.

=1

Since each of these d* values are weighted by corresponding w* values, player 1 selects x,
m
x 20 ¥ x= 1] which will yield

=
. K X
min {max | ¥ wtaf, ..., ¥ wkdy
X k=1 k=1

where K is the number of multiple payofTs.
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Hence, the problem can be expressed as
) min v

subject to

X
vz Y whdt ¥j
k=1

" m
2 df = max lz (g* - af)x,, 0] ¥j, ¥k

i=1

*

x; 2 0 ¥i
where v is the value of the game.
However, this problem may be expressed as a linear programming problem.
THEOREM 1: Formulation (1) is equivalent to the linear programming problem
| 3) min v

subject to

>

vz Y whf ¥
k=

23 @-ab)x ¥j ¥k

i=]

3

x',= l

M=

j=

x 2 0¥j, ff>0¥j ¥k

PROOF: Suppose v, is the optimal solution to (1) and v; is the optimal solution to (2). We want
to show that v; = v,. Clearly, v, 2 v, since the w* are positive and]f = d," for all j and k.

K
Thus, it must be shown that v; < v;. Suppose v, > v;. Then vi= ¥} wkd¥ for some j, say
k=1

| J = Ji, and some set of x, values, say x, = x,-'o ¥i. Letting x;; = x; for all i values and jj‘| = d}‘l for all
k values, we obtain a feasible solution for problem (2) which is equal to v, and less than v,. This is a
contradiction to the original assumption.

The following theorem demonstrates that formulation (3) is equivalent to Cook’s formulation (1).
THEOREM 2: Formulations (1) and (3) are equivalent.

PROOF: Cook's formulation is
min max ¥ wd*(x, )
x v K

where x and y range over m and n dimensional unit simplices, and

d“(x, y) = max ]0, ¥ ¥ x (g* - aly|.
i
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Formulation (3) is

4 . k k
: min max wka(x)
x j=l.2.n ; !

where

d¥(x) = max [0, 3 x (gF - a,-‘;)]

] Clearly, d*(x, y) < ¥, df(x)y; for all k for any x, y.
' J

Also, since w* > 0 for all k,

Y wkd* (xy) < Y ¥,
P

J

; wkdk(x)

and

max ¥ wkd*(x, y) < max ¥ [Z wdk (x)]y;
Y k Y J k

k gk
= max wid (x)
J=1.2.....n ; s

But, if ¢/ is the extreme point of the y-simplex whose j-th coordinate is 1,

d*(x, e) = df(x).

Thus,
max ¥ wkdk(x) = max ¥ wha* (x, ¢)).
i - J=l 2 %
Also,

max ¥ wkd*(x, ¢/) < max ¥ wkad*(x, y)
7k Yook

since the sums considered on the left are a subset of those considered on the right.

i Consequently,
max J wkd*(x, y) = max ¥ wdf(x)
Yook Ik

and the two formulations are equivalent.

3. EXAMPLES

EXAMPLE 1: Consider the multigoal game solved by Cook [1] with three different payoffs where
g'=1,g2= 5, g’ = 4 and corresponding payoff matrices given by

t-¢| , [0 | 24
2 7] A= 34 AT |61

and weights w' = 2, w? = 5 and w> = 1. The problem may be formulated as

A =
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min v
subject to
v 2t + .5+
v 21 +.51 + S
—X; < f
15x, + 2x, < Vi
2x) + 10x, < /i
Tx,+ 8x, < 13
-2x; + 9x, < 13
5%, < 13

2

Y x=1

i=1
x, 2 0¥i, ff20¥j, ¥k

The solution to this problem is x; =1, x,=0, v= 14, y; = 0 y, = | as given by Cook. Note
that in this formulation only three matrices (the ((gX— a})), k =1,2,3) need be caiculated in
advance. The eight extreme points a,, r = 1, ..., 8 and the eight matrices 4(r), r =1, ..., 8 are
not required. Also, there are 9 constraints instead of the IS5 required by Cook.

EXAMPLE 2: In this example provided aiso by Cook, the three goals are gl=4gl=1,¢'=2
with corresponding weights w! = 1, w? = 2, w’ = 2.5. The payoff matrices are

2 05 1 -3 712 8 -2 3
Al={—-1 =2 6], 42=] 0-20],4'=]-5 60
0 3 -1 3-16 -3 16

Using the formulation given in (2), the solution to this problem is v = 6.32456, x, = .49123,
x, = .20175, xy=.30702. This solution differs from that given by Cook (v = 58148, x, = .636024,
x3=.157764, x; = .206211), but this is the result of some errors in the A (r) matrices calculated by
Cook. The corrections in these matrices which need to be made are A3 (2) = 4, A3;(4) = ~10,
A3|(5) =0, A”(b) = 16.5, An(()) = -3, A;\(7) =4, A})(s) = 12.5, and A;;(S) = 9. The errors were
apparently the results of calculating 4}, (the 1-1 element of 4,) to be —4 instead of 4 and calculating
633[ to be 4 instead of —4. When these corrections are made, Cook’s formulation also produces the
solution given above.

The formulation in (2) has 13 constraints and the previous formulation has 22 constraints.

3. SUMMARY

The formulation of the two-person zero-sum multiple payoff game given in (2) is an improvement
over the previous formulation in that the number of constraints increases proiportionately with the
number of strategies available to player 2 and proportionately with the number of payoffs as opposed to
increasing proportionately with the number of strategies available to player 1 and exponentially with the
number of payoffs. In general, the new formulation has n(K + 1) + 1 constraints instead of
m(2X — 1) + 1 constraints.
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For example, with 5 payoffs present, the new formulation has 31, 25, and 19 constaints when
there are S, 4, and 3 strategies, respectively, available to each player. In the previous formulation there
are 156, 125, and 94 constraints, respectively.

Finally, it should be noted that there is no appropriate formulation corresponding to (2) for the
payoff to player 2 since the formulation leads to unbounded values for the f* and the objective function
is consequently unbounded.
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ABSTRACT

In this paper we address a bin-packing problem which possesses a variety of
modifications of the classic theme. Among these are bin-dependent chip
weights, bin costs, and bin-dependent penalties for unused capacity. Lagrangi-
an relaxations are employed in the context of a branch-and-bound framework
in order to solve the problem afler which substantial computational experience

| is provided.

1. INTRODUCTION

1.1 Problem Statement

The classic, one-dimensional bin packing problem seeks the minimum number of bins (of finite
capacity) required to pack a set of chips possessing given, bin-independent displacements (weight,
length, volume, etc.). In this paper, we consider a generalization of this theme which can be made pre-

cise by model (GBPP1) below:

| (1) (GBPP1): Minimize: i (c;y; + dyu)
i=1

n
‘ (2) Subject to: Y x,;, +u; = wy, 1 < j<m
i=1
m
3) Y x,=11<i<n
=1
@ Xi;, ¥, binary

where:  w; is a strictly positive, integer capacity of bin J,
1; is the deplacement of chip i if assigned to bin j,
u; is the unused capacity of bin j,
¢, is a positive, integer cost of bin j, and
d; is a positive, integer cost of unused capacity of bin /.
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The binary variables x,;, and y, relate to the assignment of chip i to bin j and the use of bin J, respec-
tively. We assume the problem dimension to be n(chips) by m(bins) where n and m are such that at
least one feasible pack is possible. By "feasible pack” we mean any solution satisfying (2)-(4). Addi-
tionally, we assume the unused capacity cost (and the bin cost) to be realized only if a bin is used.

While not considered in the research presented here, it is worth remarking that it may be of
interest to constrain (GBPP1) further by assuming the existence of various packing restrictions. To
illustrate, suppose chips represent drums of chemicals where two chemical types which otherwise couid
be stored together, may possess properties making such storage undesirable. Letting R; be the set of
(possibly empty) pairwise packing restrictions for bin j, we could append (GBPP1) by constraints of the
form

(5) Xy +xy <1, (b W) eR, 1<j<m

Indeed, constraints of this nature have been considered in other work by the first author {22]); however,
in what follows, we have assumed R; = @ for all j.

It is easy to see that the classic bin-packing problem is but a special case of (GBPP1). In particu-
lar, we can set ¢;=1, d,=0, wy=wfor 1< /j<mandlet t;,=1 for 1 <i<n 1<j<m
Equivalently, letting ¢, =0 and 4, =1 for 1 < j < m with #;, and w, as just specified achieves the
same result.

While bin-dependent chip displacement and differing bin capacities provide rather natural generali-
zations of the classic problem, the cost penalty for unused capacity is less so. In addition, this cost
penalty for unused capacity can clearly create problems where a solution using more costly bins will
have a smaller total cost than a solution where less costly bins are used. To see this consider the fol-
lowing small illustration:

L,

J

1 2 3 4 5
i

Jio 2 3 4 5 1 o 13 o o o
¢: ¢ 4/5¢) 3/5¢y  2/5¢; 1/5¢ 2 /3¢ ¢y © o0 oo
d, d, S/4d, S/3d, 5/2d, 5d, 3 o 13, ¢ w o
W € cy T 4 Cs 4 oo 1/3¢; o ¢4 oo
5 1/3¢c, o w oo ¢

Clearly, a pack requiring the fewest bins is achieved with x;; = x5 = x;;= x33= xg= 1 and x, = 0,
¢y
5

5
solution x,; = 1 for all i = jand x; = 0 elsewhere, having value z ¢;=13c. If0<d; < -]Sg the first
=1

elsewhere. The cost or value of this solution is ¢; + ¢; + ¢,d,/3 = + c¢d\/3. Consider now the

. . 18 L.
solution costs less than the second. Alternately, if d, > R the latter solution is better.

A central ingredient (although not the only one) in differentiating between least cost and classic,
least cardinality packs is the assumed penalty or charge for unused bin capacity relative to bins used.
As one might expect, this implicit constraint on free resource disposal creates a degree of difficulty
which empirically speaking, can make for exceedingly difficult problems. Note that we use the "empiri-
cal' qualifier here to distinguish the difficulty of (GBPP1) from that of the classic bin-packing problem
since otherwise the notion of difficulty or complexity is indistinguishable due to the NP-completeness
of the classic problem.
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It is interesting to imagine physical systems where (GBPP1) applies. One example arises in the
case of so-called paraliel-processor scheduling (1, 3]. Here, we seek a schedule-creating assignment of
single operation jobs to a set of processors which minimizes the completion time (called makespan) of
all jobs. With a modest degree of effort it is easy to see that this is but a dual-like version of a bin-
packing problem. Specifying some limit (e.g., lower bound) on the overall completion time, we then
seek an m-bin pack of chips (jobs) to the bins (processors) where each bin has capacity no greater than
this specified limit on processing time for the analogous processor. When processors are nonidentical,
the bin-packing interpretation reflects bin-dependent chip weights. The cost of bins corresponds to,
say. a fixed, processor utilization charge (e.g., setup cost) and assuming that once a processor completes
its processing assignment, any remaining idle time is costly (e.g., opportunity cost) we have the unused
capacity penalty in (GBPP1).

Following, we present a brief review of bin packing and related literature after which, a rather
extensive treatment of a series of models pertaining to (GBPP1) is included. Here, a variety of formu-
lations are examined from the perspective of their potential usefulness. The most promising of these is
explicitly demonstrated and then evaluated by a set of computational experiments.

1.2 Review of Relevant Literature

Presently, much of the literature deals only with the traditional bin-packing problem. Further,
there appears to be less than complete standardization in the open literature regarding the terms bin-
packing problem, cutting-stock problem, loading problem, and multiple-knapsack problem. Occasion-
ally, the terms are used interchangeably, and often they are not. In order to avoid any confusion, the
terms bin-packing or cutting-stock will be taken by convention here to mean the problem where all
objects must be packed or cut and the objective is to minimize the number of bins or pieces of stock
used. The terms loading or multiple knapsack will be taken to refer to the related problem where not
all the objects must be loaded or assigned and the objective is to maximize the value of the loaded
items.

One of the earliest appearances of the classic bin-packing problem in the literature is in the paper
of Eilon and Christofides [6]. While several formulations of the bin-packing problem as well as related
problems are discussed in {6}, the one actually solved is as follows:

m m

(6) Minimize: Y Y vix;
=1 je=1
n

N Subject to: Yux, Ewl<j<m
=1
m

(8) zx,','=lal<"<"
j=1

9 x; binary

where v,,, = pv,, v, = 1, and p is the largest number of objects that can be packed into a bin. This
formulation is interesting because it eliminates the need for y; variables to indicate the use of a bin
(each with capacity w) due to the structuring of the v; coefficients which ensures that the smallest
number of bins is used. Devised in [6] is an exact and a heuristic algorithm for solving the problem.
The exact procedure is a variation of the tree-search algorithm of Balas (2] while the heuristic algorithm
is a variation of the best-fit decreasing algorithm which will be discussed shortly.
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Performance guarantees on the quality of the solution for bin-packing heuristics have received
substantial attention. In 1972 and 1973 Garey, Graham and Ullman [10], presented worst-case results
of various heuristic algorithms. However, it was Johnson's doctoral thesis in 1973 {19] which laid the
theoretical groundwork for the worst-case analysis of the class of heuristic algorithms known as any-fit.
A summary of this work appears in [20). Also, Johnson, Demers, Ullman, Garey and Graham, have
presented a comprehensive survey of both old and new results in [21].

The four any-fit algorithms of primary interest are as follows:

Let 0= {1, 2, .... n} be the set of objects or chips, and let
J=11.2, ..., m) be the set of bins.

1. First-Fit (FF): Assign each object from set 0 in the order in which it appears in the set to
the bin in set J with the lowest index into which it will feasibly fit.

2. Best-Fit (BF): Assign each object from set 0 in the order in which it appears in the set to
the bin in set Jsuch that the resulting unused capacity is minimal.

3. First-Fit Decreasing (FFD): Order the set 0 in nonincreasing order on the basis of object
displacement. Apply the FF algorithm.

4.  Best-Fit Decreasing (BFD): Order the set 0 in nonincreasing order on the basis of object
displacement. Apply the BF algorithm.

The worst-case results are expressed as a ratio of the solution value of the heuristic to the optimal
solution for each algorithm. The ratios for these algorithms, say R, are given as asymptotic results and
appear as follows [21]:

L lim Rep(k) = 17/10
2. lim Rgr(k) = 17/10
3. Jlim Reeplk) = 11/9
4. lim Rgep(k) = 11/9
Here, k is the optimum number of bins required for a given list of chip displacements.

More recently Hung and Brown in 1978 [16] considered a form of the bin-packing problem in
which the bins were permitted to have differing capacities. Their formulation follows:

m
(10)  Minimize: Y y,.
=1
(11)  Subjectto: ¥ 1x, < wy, 1<j<m

m
(12) 3 x,; =1 1<i<n
f=1

(13) x,,. y; binary.
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The algorithm developed is basically one of implicit enumeration. However, a characterization of
assignments was given which capitalizes on any equivalence in object displacements or bin capacities.
This permitted a development of a set of rules which excludes redundant assignments.

In 1975 Ingargiola and Korsh [18] presented an enumerative algorithm for solving the related
loading or multiple-knapsack problem. The formulation of the problem considered appears as:

(14)  Minimize: i i X,

i=1 j=1

(15)  Subjectto: Y tx, < w, 1<j<m
=1
m

(16) T x <1 1<i<n
=1

17) x;;, binary.

The algorithm in [18] is based on the notion that before a search is attempted, as many decisions as
possible should be made about the inclusion and exclusion of objects from the knapsacks. This is
accomplished by the introduction of an ordering relation among objects which generates those objects
that will be excluded in an optimal solution if a given object is included.

e BN

In 1978, Hung and Fisk [17] presented a branch-and-bound algorithm for solving the same prob-
lem as that of Ingargiola and Korsh. Here, it was shown that it is possible to compute the optimal LP
dual multipliers in closed form. Furthermore, these multipliers for the first set of constraints were
shown to equal a constant. Two refaxations of the problem were developed; lagrangian and surrogate.
In the lagrangian relaxation the second set of constraints are relaxed by use of the optimal LP dual mul-
tipliers, and the problem decomposes into separate knapsack problems for each bin. In the surrogate
relaxation the first set of constraints is combined into a single constraint, and the second set of con-
straints is substituted into this constraint; tihe problem then reduces to a single-knapsack problem.

In a follow-up article Fisk and Hung [9] presented a heuristic algorithm for solving the same
problem. In fact, they used the same surrogate relaxation as discussed above. Their procedure is
founded upon the observation that if a feasible solution can be found among the objects and bins
identified in the optimal solution to the relaxed problem, then an optimal solution to the original prob-

| lem has been found. The search for a feasible solution employs a set of exchange rules which considers
all possible one-for-one, one-for-two and two-for-one exchanges of objects between bins.

‘ Of additional interest is work relating to what has been popularized as "generalized assignment
models." Included are a myriad of formulations which deviate in various ways from the traditional
assignment theme. Subsumed by these generalizations, of course, is the classic bin-packing problem.
A lucid exposition of an algorithmic developments within this area can be found in [24) and [25).

Other references pertaining to bin-packing and related problems can also be cited. A partial list
would include works in [4, 5, 7, 11, 27].

2. METHODOLOGICAL DEVELOPMENTS
There are a variety of ways to approach (GBPP1), classic among which is a branch-and-bound

scheme where bounds are derived from an appropriately constructed linear programming relaxation. In
fact, such an approach was pursued by the authors where (GBPP1) is augmented with clique constraints
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which tighien the relaxation. These clique constraints, derived from implicit as well as explicit packing
restrictions, can be quite powerful in characterizing the integer hull (e.g., {23]) of (GBPPI1) but can
themselves be relatively difficult to construct. This should be obvious since determining cligues in
graphs is NP-complete [12]. To this extent, the linear programming relaxations which were developed
did not result in especially encouraging computational performance (especially when R, # &#. As a
consequence, we turn to an alternative attack, also rather classic, where we create lagrangian relaxations
of the problem [26]. In what follows, we consider various of these relaxations presenting
computational results for the more promising ones.

Suppose we recast (GBPP1) in the form given by (GBPP2) below where we let u, = w,), —
Y t,x,, z,= 1 — y, and where, in addition, we replace «, in the first set of constraints by a slack vari-
=1
able. Restating the problem as a maximization problem, we have:

(18)  (GBPP2): ¥ (¢, +d, w, — Maximize: Y (¢, +d,w,;, + 3 ¥ di,x,.
=1

=1 =1 =1

(19 Subject to: Y fx, +wz, S w1 < i< m
=1
m

(20) Y x, =1 1<i<n
=1

(20 x,,, z, binary.

In the ensuing developments, we will adapt the notational convention whereby ¢, denotes the lagrange
multiplier associated with the packing constraints and r,, the multiplier associated with the assignment
restrictions.

2.1 Lagrangian Relaxation of Packing Constraints

If the packing restrictions of (GBPP2) are relaxed, the lagrangian formulation for a given nonne-
galive vector ¢ can be stated by (LR1) below:

22y (LRI1): Y (c,+dw) — 3 wq, — Maximum: Y (¢, +d w, — wq)z,

=1 =1 1=

n "
+ Y ¥ W, = g0y,

i=1 =1

m
(23) Subject to: Yo, =L1<ig<n

1=1
(24) x,,, 2, binary.

Now, relaxing the packing constraints of (GBPP2) leads to a relaxation for which the optimal
solution yields a bound value identical to that obtained from the sofution of the LP relaxation of
(GGBPP2). This result follows directly from the integrality property given in Geoffrion [13] which states
that an optimai vaiue of a lagrangian relaxation is not altered by dropping the integrality conditions on
its variables. The implication of this property is fairly immediate and can be given by the following:
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THEOREM 1: Let the LP relaxation be feasible and let the lagrangian relaxation have the
integrality property. Then the maximum value of the lagrangian relaxation is equal to the value of the

LP relaxation.
PROOF: The theorem follows trivially from the integrality property specified in [13].

Clearly, (LR1) possesses the integrality property and by Theorem 1 its maximum value equals the
value of the LP relaxation of (GBPP2). As a consequence, little may be gained in formulating and
solving (LR1) that is not otherwise achievable by simply solving the LP relaxation of (GBPP2). For
this reason, the model relaxing the packing constraints is not pursued further.

2.2 Lagrangian Relaxation of the Assignment Constraints

Suppose we pursue an alternative lagrangian formulation based upon a relaxation of the con-
straints pertaining to assignment. As it turns out, this rclaxation will prove to be the most fruitful in
this work and, in fact, provides the basis of the principle algorithm developed and subsequently tested.

If the assignment constraints are relaxed, the lagrangian relaxation of (GBPP2) for a given vector
r can be given by (LR2) below:

(25) (LR2): X (¢, +dw) - Y r,— Maximum: 3 (¢, +d,w)z +
i r=1

i~

Ll ”

Y 2 (dt, — r)x,

=1 =}

n
(26) Subject to: Y t,x, +wz, S w, 1< j<m

=1
27 x;;» 2, binary.

To maximize the value of this relaxation, we want to find those multipliers r, which solve the following
lagrangian dual problem:

(28) (LD1): Minimize: ¥ r, + {maximum: Y (¢, +diw)z, + ¥ ¥ (d;1, ~ r)x;

= Jj=1 j=1 i=1

n
Yhx, +wz, Sw,1<j<m
i=]
X, 2, binary
29 Subject to: »; unrestricted, 1 < i € .

Consider the maximization part of (LD1). The following result defines an optimality condition
that must hold for this maximization problem:

LEMMA 1. Let z* x* be the optimal solution to (LD1) for a given r. Then
30 (c;+dw)zt+ F (dt, —r)x} 2 (c;+dw), I <j<m
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PROOQF: By contradiction suppose that at optimality (30) is violated for some bin j. This implies
that :7= 0 and that x}, = | for one or more objects. However, the value of this solution can always be
increased by letting z7 =1 x}} = 0 for all i which contradicts the assumption of optimality and the proof
is complete.

By use of Lemma [, (LD1) can be transformed into the following probiem:
n m m
(3)  (LD2): Minimize: X7+ Y ¢+ 3 (¢, +d,w)
1= =1 =1

32 Subjectto: ¢, = Y (dt,—r,— (¢, +d,w), 1<k <p,
IGI/‘

l</j<sm

(33) g, 20, 1<,/ < m runrestricted, 1<i<n

where [, is the set of objects in the kth feasible pack for bin j and p, is the number of feasible packs
for bin j.

To see the relationship creating (LD2) note that the objective function of the maximization part
of (LD1) must contain a constant term, ¢; + d,w, for each bin j. The value of the objective function in

excess of this constant is Z (d;t,; — r,) — (c; + d,w;) since the excess can only occur when objects are
lél,k

packed into bin j and not when bin j is closed. Furthermore, the objective function of (LD1) requires
that the value in excess of this constant be maximized. If we let g, represent the maximum value then

g; 2 Y (dit; — r)— (c; + dw) 2 0 for all k which is the constraint set and the sign restriction for
i€l

g; in (LD2). Finally, since the objective function of (LD1) requires that 3, ¢, be minimized, we have
=1
the objective function of (LD2).

Note that the objective function of (LD2) contains a constant term which cancels exactly the con-

stant term in the objective function of (LR2). Since (LD2) is a transformation of (LD1), the lagran-
gian dual problem for (LR2) can be written as follows:

(34) (LD3): Minimize: X r + Y g,
i=1 j=1

(35) Subjectto: Y r+¢q, 2 Y dit,— (c,+dw), 1 <k <p,
1€, IGI,,‘

1€</j<m

(36) .q, 20, 1< j < mrunrestricted, 1<i<n.

Writing the LP dual of this problem we have (LD4):

(37  (LD4):  Minimize: 3 |c,+dw,— ¥ di,|v..
ik i(I,‘

(38) Subject to: Y, vu=1, 1 <i<n
ke,

(39 Tvisl, 1<i<m
k
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(40) v 20, ISsk<p, 1€ m.

where v, is the dual muitiplier associated with each constraint in (LD3), the objective function has
been changed from a maximization to a minimization, and /, = {(j, k)|i € I,}.

Observe that due to the constraints, each v, in (LD4) is further restricted to be upper-bounded
by 1. If each v, is thought of as a variable which selects a pack /; or some portion of it, then (LD4)
is the problem of selecting a set of packs (possibly fractional) such that the cost of the packs is minim-
ized, each object is packed once, and at most one pack is selected from each bin. The cost of a pack is

the cost of a bin, ¢, plus the cost of any unused capacity in bin j, d,w; — 2 d;.
lEI,k

Problem (LD4) can be further constrained by the addition of a lower bound on the number of
packs that must be selected. With the addition of this constraint, (LD4) can be rewritten as follows:

(41)  (LDS):  Minimize: Y |c; +d,w,— ¥ dit,| vi.

ik i€l
(42) Subjectto: Y vi=1 1<i<n
k€l
43) Tvi<l 1<ji<m
P
(44) Yvi>landvy 20, 1 <k <p
3
I</j<m

Here, /is a lower bound on the number of bins required.

Relaxing the assignment constraints leads to a lagrangian relaxation for which determining the
optimal value of the relaxation is equivalent to solving a large LP problem. This notion, with the
exception of the constraint on the minimum number of bins, follows from the results of Fisher,
Northup, and Shapiro [8]. The discrete optimization problem which is considered takes the following
form:

(45) Minimize: /(x)
Subject to: g(x) < &
x€X

where f(x) is a scalar valued function, g(x) is a function from R" to R™, and X is a set of discrete ele-
ments. Fisher showed that the lagrangian dual of this problem, where the constraints are relaxed, can
be transformed into the following problem:

7
(46) Minimize: 3 A, f(x").

=1

7
Subjectto: I A, g(x) < b

=1

A, 2 Oforall ¢

where x'is an element in the set Xand T = | X|.
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The equivalence between (LD4) and the above LP is easy to verify:

1. The index & is equivalent to . When the assignment constraints are relaxed, (GBPP2)
decomposes into separate problems for each bin. Thus, there is a separate index k for

each bin j.

2. X, = {1,-,, Iis, ..., I}, the set of feasible packs for bin J, is equivalent 10 X.

3. Iy is equivalent to x'. That is, I is an element of X,.

. ) .
4, ¢+ diw — ez[" d;t;| is equivalent to f(x").
i€l

5. Y vy isequivalent to g(x) and 1 is equivalent to b.
i€l

6. The convexification constraint in (LD4) can also be stated as an equality if one includes
the empty pack where y;, = 0 as a feasible pack. The variable representing the empty pack

is the slack variable.

7. v is equivalent to A .

Let us return to (LDS5). If one were to enumerate all feasible packs for every bin and solve the

resulting LP problem, the amount of computational effort would be large indeed.

However, it may not

be necessary to consider all possible packs or for that matter even a large number of them. What are of
interest are the "goods' packs; that is, those which will be in an optimal solution to (LD35). Required
then is a procedure for generating these "goods" packs. Such a procedure can be stated as follows:

A Column Generation Procedure

Step (0): Generate a slack variable for each bin and add it to the problem. Determine a value
for /, the minimum number of bins required. If a feasible solution to (GBPP2) is
known, generate the packs which correspond to this solution and add these columns

to the problem.

Step (1): Solve (LDS5) yielding a set of optimal dual multipliers. Let r* correspond to the first
set of constraints in (LD5), ¢* the second set, and s* the third set.

Step (2): For each bin j, solve the following knapsack problem:

m
(47) Maximize: Y (d;1, + rIx;,

/=1

(48) Subject to: Y £,x, € w,.
=1

Let x7 be the optimal solution for bin .

Step (3):  For each bin j, check if the column generated is an improving column.

(49) Yrxn+qr+st>c +dw - Y di,x;

i

then add the column corresponding to x? to the problem.
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Step (4): If at least one of the generated columns is an improving column, go to Step 1. Otherwise,
the current solution to (LD5) is optimal. If the current solution to (LD5) contains artificial
variables, then there exists no feasible solution to (GBPP2).

The framework of the procedure above is, of course, standard and has enjoyed frequent use else-
where. In particular, the use of a column generation scheme was employed in [14, 15) for the solution
of the classic cutting-stock problem.

2.3 The Development of the Branch-and-Bound Procedure

In this section, we suggest a branch-and-bound procedure which is used in resolving any
differences between the solution to (LD5) and the solution to (GBPP2). Since the LP problem in
(LD5) results from a langrangian relaxation of the assignment constraints, it is possible that the value
of the optimal solution to (LDS) may be less than the value of the optimal solution to (GBPP2).
Furthermore, even if the value of the optimal solution to (LDS5) equals that of the optimal solution to
(GBPP2), the solution to (LDS) may be fractional.

Bounds in the branch-and-bound procedure are determined by solving a relaxed problem with the
optimal dual multipliers from the solution to (LDS). The problem which is relaxed is as follows:

m m n
(50)  (GBPP3): Minimize: Y (¢, +d;w)y,— ¥ ¥ dit;x,

j=1 j=1 i=1

n

(51) Subject to: Y £;x; € w,y;, I<j<m
i=1
m

(52) Y xi=1 , 1<ign
=1

(53) x;;, ¥; binary.

u
Problem (GBPP3) follows from (GBPP1) by letting u; = w,y; — ¥, 1,x, in the objective function and
=1
by replacing u; with a slack variable in the first set of constraints. The lagrangian relaxation of the
assignment constraints of (GBPP3) for a given r result in (LR3) below:

n m m n
(54)  (LR3): Y r + Minimize: 3 (e +dw)y, — 3 X ldit; + r)x,
=1 =1 j=1 i=1
i
(55) Subject to: Sx, Swy, 1<j<m
i=1
(56) X;;, y; binary.

In this form, (LR3) contains no constraint on the number of bins that are required to solve the
n

problem. The relaxation could be augmented, for example, with a constraint of the form 2 Yy 2k
j=1
where k is a lower bound on the number of bins required. However, this constraint makes no distinc-

m
tion between the capacity of the bins. A constraint of the following form 2 w,y, 2 | may be more
i=1
discriminating. Here f is a lower bound on the bin capacity needed to solve the problem. If the dis-
placement of objects were independent of the bins in which the objects are packed, then ¢ would simply
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n
be 2 ;. However, the displacement of objects can vary from bin to bin; thus, r must be determined as
=1
n
2 12“9 (1;), since there may exist a solution where each object attains its minimum displacement.
1= XIxm
However, depending on the range of object displacements, this capacity constraint may be rather weak.
A capacity constraint which seems to more accurately reflect the capacities of the bins can be given as
m

Y a,y, > n where a, is the maximum number of objects that can be packed into bin j. Clearly this
i=1
constraint is valid since any feasible solution must allow for n objects to be packed.

The value of a; for each bin j can be determined by solving the following knapsack problem
(KP1):

n
(57)  (KP1): Maximize: Y x,=a,
=1
n
(58) Subject to: Y x, < w,
=1
(59) x,; binary.

While this problem can be treated with any standard knapsack algorithm, it can also be solved by the
following procedure:

KP1 Solution

Step (1): For bin j sort the objects in nondecreasing order on the basis of #,. Let (i) denote
the / th element in the sort.

P
Step (2): Let p be the greatest integer (0 < p < n) such that ¥ (), < w,.

i=1

Step (3): The optimal solution is x();=1for i=1,2, ..., pand x();=0 for i=p + 1,
p+2 ....nifp>0orx;=0foraliif p=20.

LEMMA 2: The KP1 solution procedure solves problem (KP1) optimally.

PROOF: Let p* be the value of p determined in Step 2 of the procedure. If p* = 0. then the
solution is trivially optimal. If p* > O then it is possible to pack at least p* chips into bin j as shown in

Step 3. Let the chips packed be denoted by (1),(2), ..., (p*). The chips not packed are then
(p* + 1), .(p’ +2), ..., (n) such that 1y, >u for i=p*+1, p*+2 ..., n where
U =-w, - t(»,- In order for a solution to (KP1) to exist in which it is possible to pack more than p*

1
chips into bin j, it must be possible to exchange at least ¢ + | chips not in the current pack for g chips
which are in the pack. However, the totai displacement of any ¢ chips not packed must be at least
equal to the displacement of any ¢ which are packed. Further, the displacement of any size chip not
packed must exceed u,. Thus, it is not possible to create an exchange of ¢ + 1 unpacked chips for ¢
which are packed into bin j. Hence, p*is the maximum number of chips which can be packed and the
proof is complete.

When augmented with the capacity constraint, {LR3) can be rewritten in the form given by
(LR4):
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(60) (LR4): Y r,+ Minimize: i (c; + d;w)) — i i (dyt; + r)x;

=1 Jj=1 j=1 im1
61) Subject to: i x; S wy, 1<j<m
=
m
(62) Yay =n
=1
(63) X,. v, binary,

The solution to (LR4) can be obtained as follows:
LR4 Solution Procedure

Step (1): For a given r, solve the following knapsack problem for each bin:

m

(64) Maximize: (d;t, + r)x,
i=1
n
{(65) Subject to: Y, 1;,x,, < w,
=1
(66) x;; binary.

n
Let x* be the optimal solution to this problem for bin j and let v,= ¢, + d;w, — ¥,

(d,y, + r)x}.

Step (2): For each bin j solve KPl. Let x; be the optimal solution to (KP1) and let

El = z xl’l‘
Step (3): Solve the following knapsack problem:

m

(67) Minimize: 3 vy,
=1
m

(68) Subjectto: ¥ a,y; = n
j=1

(69) y, € {0, 1).

Let y* be the optimal solution to this problem and let the value of the lagrangean relaxation
n m

L=Yr+3 vy
=1 =1
The correctness of this procedure is given by the following result:

THEOREM 3: The LR4 solution procedure solves problem (LR4).
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PROOF: In an optimal solution to (LR4) either y, = 0 or y, = | for each j. If y, = 0 for some /,
then x,, = 0 for all /i and the value of the lagrangian relaxation associated with bin j is zero (i.e.,
v, = 0). However, if y, = 1, then the optimal value of the lagrangian relaxation associated with bin j is
the optimal value of the following problem:

(70) Minimize: (¢; + d,w;, — ¥, (d;1, + r)x,
=
(7D Subject to: Y, 4,x; € w,
i=1
(72) x,; €10, 1}.

This, however, is the same problem as that which is solved in Step (1) of the (LR4) solution pro-
cedure. Thus, v, is the optimal value of the lagrangian relaxation asociated with bin j and the solution
of (LR4) reduces to the solution of the same problem which is solved in Step (3) of the procedure.

The branch-and-bound procedure to be used in resolving differences between the optimal solution
to (LDS) and the optimal solution to (GBPP2) can now be stated formally.

Solution Procedure for (GBPP2)

Step (0): Solve (LDS): if the optimal solution is integer, stop. Let the subproblem list be
empty, and let p = 0. Let the candidate bound C* be a large positive value. Per-
form Steps 1 through 4 and go to Step S.

Step (1): Using the optimal lagrangian multipliers from Step 0. Solve (LR4) to yield a current
bound C and a current solution (x, y).
If C 2 C*goto Step 4.

Step (2): If for the current solution

Y x, # 1 forany i
1€J

where J = {jly,= 1]

go to Step 3.

Update the candidate bound and solution (x* y*) with the current bound and solution
and remove all subproblems from the subproblem list with a bound equal to or greater
than the candidate bound. Go to Step 4.

¥

If 1, = @goto Step 3.1
Let J,={jlj€J i€, andx, =1}
Select for branching the variable x;, such that

Step (3): Let /| = i‘ T x 21

1€J

Zx,--=0}

8, = max [max {(d,1, + r/1,}].
€l g€,

Add the subproblem to the subprobiem list and go to Step 4.
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3.1Let J! = {jlj € Jand object i € /, is not prohibited from bin j}. If J/= @forall i € I, go
to Step 3.2. Select for branching the variable x,, such that

6, = max max {(d;t; + r/t,}}
i€y ié!,‘

Add the subproblem to the subproblem list and to to Step 4.

3.2 Let J= {j|/ € Jand object i € I, is not prohibited from bin j}. If J/'= @ for any i, a feasi-
ble solution does not exist; go to Step 4. Select for branching the variable x,; such that

6, = min min [v,/a}}.
i€l, j€J

Add the subproblem to the subproblem list and to to Step 4.

Step (4): Setp—p + 1.

Step (5): Select from the subproblem list the subproblem with the least lower bound. If the
subproblem list is empty, stop.

Step (6): Let x,; = 0 and perform Step 1 through 4. Let x;, = 1 and y, = 1 and perform Step
1 through 4. Go to Step S.

2.4 An Approximate Langrangian Relaxation

Recall, from the branch-and-bound procedure for (GBPP2) just presented, that the optimal multi-
pliers are first determined by column generation procedure. The branch-and-bound scheme is then
invoked to determine the optimal primal solution. We could, of course, have employed a subgradient
approach to determine these multipliers. Indeed such an attack was examined;, however, the usual
computational difficulties arose (e.g., step size adjustment, etc.) and the procedure was abandoned after
a preliminary investigation. Regardless, with either the column generation or the subgradient procedure
no further adjustment of the lagrange multipliers is pursued after the initial optimization due to, in fact,
the computational expense incurred. Suppose, however, it were possible to approximate the values of
the optimal multipliers in a manner that was not computationally expensive. In such a case, it might be
possible to recompute multipliers at each node in the branch-and-bound tree without sustaining prohibi-
tive computational effort. Following, we develop precisely such an approach.

Clearly, one method for approximating the multiplier values would be to simply use the optimal
values of the dual multipliers from the LP relaxation. It is the case however, that in those instances
where the cost of unused capacity dominates or affects significantly the optimal solution value, the
bounds derived by using the optimal LP dual multipliers for an approximation can be quite weak. We
must have another alternative and as such, consider again (LR4). In order to maximize the value of
this relaxation, we seek those multipliers r which solve the lagrangian dual, (LD6) below:

(73)  (LD6): Maximize: S+ Minimum ¥, (¢, + d;w)y, —

j=1

m n

3 3 i, + r)x,

j=) =]
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Subject to: r; unrestricted Yx, <wy, 1 <j<m
<ign j=1
n -_—
2 a,y;, 2z n

x;;, y; binaryg.

It is well known that the objective function of this problem is concave in the r; variables [9].

Suppose now that all the lagrange multipliers are constrained to be equal in value. Then the prob-
lem can be restated as follows:

n m
(74)  (LD7): Maximize: S+ Minimum Y (¢, + ¢,w)y; —

i=1 =1
m n
2 2 (dl'“ + ’,-)x,-j
=1 i=1
n

Subject to: r; = r and unrestricted Yux, Swy,1<j<m
for 1<ign =1 :

m -—
2ay=zn

j=1
Xij» Yi binary].
or equivalently,

(15) Maximize: nr + Minimum Y, (¢, + d;w;)y, —
=1

i i (d;ty; + r)x,

j= i=}

Subject to: r unrestricted Yux, Swy, 1<ji<m

Xijo ¥, binaryl.

A constraint set for the 7, variables has been introduced into the problem. However, these constraints
are all convex and so, the lagrangian dual now pertains to the maximization of a concave function over
a convex set. Let L*be the optimal value of the lagrangian relaxation without the constraints on s, and
L*, the optimal value with the constraints on r,. Since the latter problem is constrained and the former
is not, then it must be that L* < L*
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The restrictions on the values of the r; variables will only be worthwhile if (LD7) is relatively easy
to solve. In order to show how to solve this problem, we first need to establish some properties for
(LD7). The concavity of the objective function in r has already been established. The following pro-
perty of the objective function also holds:

PROPERTY 1: The objective function of (LD7) is piecewise linear in r.

PROOF: This property follows from the minimization portion of the objective function of (LD7).
Let r have the value r. Then there exists an optimal solution to the minimization part of (LD7). Call
this solution (x', y) and let r’ change by an amount A. For A small enough, the optimal solution to
the minimization problem will remain unchanged. The change in r’ will cause the objective function of

n n
(LD7) to change by an amount [n ~ ¥ ¥ x/;| A which is linear in A. If A is made large enough,
j=1 i=~{
then the optimal solution to the minimization problem will change and the objective function will be
defined by a new line.

PROPERTY 2: The slope of the ojective function of (LD7) at any point r'is

m n

n—3 ¥ x

j=1 i=1

where (x', y') is the optimal solution to the minimization problem in (LD7) at r = r'.
PROOF: This result follows directly from Property 1.

The plot of L versus r for a typical problem might appear as shown in Figure 1. The line seg-
ments are numbered ! through 7, and the optimal value L* occurs at the intersection of line segments
3 and 4. Since the objective function of (LD7) is piecewise linear and concave in r, the optimal value
will always occur at either the intersection of two line segments or anywhere along a line segment
whose slope is zero. This suggests the following procedure for finding the value of r which optimally
solves (LD7). We note that other alternatives exist for the solution of (LD7).

L

+r 7 ; ‘ ~-r
r

FIGURE 1. Solution value of (LD7) versus r.
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Solution of (LD7)
Step (0): Select an initial value fore > 0. Letm_=m,=r = 0.

Step (1): Solve (LR4) with r,= r for all i Let m be the slope of the objective function of
(LD7) at r, and let i be its L intercept. If m = 0 stop. If m > 0, go to Step 3.

Step(2): Let m_=m, i_=4i and r_.=1r. If m_ # 0, go to Step 4. Let r=r — X where
A > 0O is a step size. Go to Step 1.

Step 3): Letm,=m, i,=i and r,=1r. If m_#0, goto Step 4. Let r=r + A where
A > 0is a step size. Go to Step 1.

Step (4): Let ¢’ be the point at which the two lines defined by m., i, and m_, i_ intersect. If
fr — '} < e stop. Let r = r', and go to Step 1.

We can give the following theorem regarding the solution determined by the algorithm:

THEOREM 4: The LD7 solution procedure terminates with a value of r which is at most a dis-
tance € > 0 from r* which optimally solves (LD7).

PROOF: Clearly the procedure terminates. Either a line segment with a slope of zero is found;
or since A > 0, eventually a point r, is found on one side of r* and a point r_ is found on the other
side. The interval (r, — r_) is successively reduced in magnitude to value of € or less. If the pro-
cedure terminates in Step 1, then a line segment for the objective function has been found which has a
slope of zero at r. Any point on this line segment will yield an optimal solution to (LD7). If the pro-
cedure terminates in Step 4, then r is either on the line defined by m,, i, or m_, i_. Without loss of
generality assume that r lies on the line segment defined by m., i,. Then at the point r the objective
function of (LD7) slopes downward in the direction of negative r, and at the point r’ which is at most a
distance € from r the objective function of (LD7) slopes downward in the direction of positive . Thus
the value of r at termination is at most a distance € from r* which optimally solves (LD7).

Before this procedure can be implemented, it is first necessary to devise some means of determin-
ing the step size A. If ris negative, then the sign of the terms (4,1, + r) can be used to gauge the step
size. For example, if the slope is negative, then there are too many objects assigned and the number
must be reduced. Let A be determined as follows:

(76) A = min {(d,1, + Nl(d;t, + r) > 0).
L

Then A will be the minimum decrease in r such that at least one x;; coefficient will no longer be posi-
tive. If one of these objects was previously assigned, then it would no longer be attractive to assign it
and the number of assigned objects would decrease. Conversely, if the slope is positive, then there are
too few objects assigned and the number must be increased. Let A be determined as foliows:
(1m A = min {—(d;t, + r)|(d,, + r) < 0}

Lt
Then A will be the minimum increase in r such that at least one x,, coefficient will no longer be nega-
tive. Now at least one of these objects can be assigned and the number of assigned objects can
increase.

If ris positive, then the sign of the terms (d,t, + r) can no longer be used to gauge the step size
since the sign will always be positive. Instead, if the slope is positive, let A be determined as follows:

(78) A = min (d/(d@, - a)|(a, - a,) # 0
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where:  a; = the maximum number of objects that can be assigned to bin j
a; = the current number of objects that are assigned to bin j.

Since there are too few objects assigned and the number must be increased, A is the minimum increase
in r such that the number of objects assigned will equal the maximum number that can be assigned for
some bin. To see this, let v;= i, — a;rand v, = i, — a,r where v, is the value of the current solution
for bin j, i; is its value when r = 0, v, is the value of the solution for bin j when the maximum
number of objects are assigned to bin j, and /; is its value when r = 0. These two solutions have the
same value (i.e., v;=V;) when r= (i; — i}}/(d, ~ a;). If these two solutions are different (i.e.,
a; # a;), then i; and /; must differ by at least the cost of one unit of unused capacity (i.e., i, = i, + d,).
Thus, r must increase by at least d;/{a; — a,).

If ris positive and the slope is negative, let A be determined by setting A = r. Since there are too
many objects assigned, the number must be reduced. However, it does not seem possible to determine
a minimum decrease in r such that the number of assigned objects will decrease. Setting r equal to
zero, which is what this step size does, will certainly not increase the number of assigned objects and
will probably decrease the number substantially.

With the addition of the step size calculations, the procedure for solving (LD7) can be restated as
follows:

Updated Solution Procedure for (LD7)
Step (0): Select an initial value fore > 0. Letr=m, = m_= 0.

Step (1): Solve LR4 with r,= r for all i Let m be the slope of the objective function of
(LD7) at r, and let i be its L intercept. If m = 0, stop. If r > 0, go to Step 3.

Step (2): If m > 0,got0Step 2.1. Letm_=mand i_ =i H m, =0, goto Step 2.2. Let
A =min {(d,r, + r): (d;t, + r) > 0}. Let r=r —X, and go to Step 1.
L

21 Let my=m and i,=i If m_#0, go to Step 2.2. Let A=min [-{d1, +r)
Lt
(djt; +r) <O} Ifli, jl(d;1,, + r) < O} = @, letA = —r. Letr=r +X, and go to Step 1.

2.2 Let r' be the point at which the two lines defined by m,, i, and m_, i_ intersect. If
fr ~ r'l < e, stop. Let r= r’, and go to Step 1.

Step (3): Ifm > 0,gotoStep3.l. Letm_=mandi_=1i 1Ifm, =0, go to Step 3.2. Let
A=r Letr=r—A, andgo to Step 1.
3.1 Let m,=m and i,=i If m_#0, go to Step 3.2. Let A = min {d,/(a, — a,))|(aq, -
}
a) # 0}. Let r=r+ A, and go to Step 1.

3.2 Let r’ be the point at which the two lines defined by m,. i, and m_, i_ intersect. If
{r — r'| <€, stop. Let r=r' and go to Step 1.

The updated (LD7) solution procedure was embedded in a branch-and-bound procedure similar to

that provided earlier for (GBPP2). In fact, the only difference here is in the composition of Steps 0
and 1. We present the following specification accordingly:
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Algorithm for (GBPP2) with (LD7) Solution Incorporated

Step (0): Let the subproblem list be empty, and let p = 0. Let the candidate bound C* be a
large positive value. Perform Steps 1 through 4, and go to Step 5.

Step (1):  Solve (LD7) to yield a current bound C and a current solution (x, y). If C > C*,
1 go to Step 4.

Steps (2), (3), (4), (5), and (6) are the same as for the previous (GBPP2) algorithm.

y 3. SAMPLE PROBLEM

In this section we present a small example problem in order to demonstrate the use of the approx-
imate lagrangian formulation for (GBPP2). In particular, we present in step-by-step manner the appli-
cation of the algorithm which concluded the previous section. Consider the problem given by the table
below:

Sample Problem: n =5, m = 4,

J

2

~ N —
00— LI N
~ W
AN N A

(NS R R
N & NN
—_ N W NN W
Lol S~ VU B -

W B o N e

We would proceed as follows:
Step (0): *=o00, p=(.

Step (1): r=10, C=5.y=ys =1 xp=xp=x4=1
Xig= Xgq= Xs4=1
r=-=2, C=6, y= y,= 1, x3p=1, x44=1
r=-=5/3, C=6, y=ys= 1, Xi2=x33=1

X)g= X44= Xs4= 1.
Step (2): Go to Step 3.

Step 3): L=1{1}, ,= (2} J,=1(2, 4}
8,4 = max {1/6, 173} = 1/3. Add the subproblem with
r==5/3, C =6, and x4 as the branching variable to
the subproblem list.

Step (4): p=1.

Step (5): Select the subproblem with r = —5/3, C = 6, and x,,
as the branching variable from the subproblem list.

Step (6): x;4=0.
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Step (1): r==5/3, C=19/3, yy=yps=1, x3=x32=1
Xga= xs4=1
r=0, C=T7 yr=ys=1, xp=xp=xp=1

Xga= X54= 1.
Step (2): Go To Step 3.

Slep (3) Il = {4}, [2=“" {3}, .I4= {2, 4],
84 =max {1, 2} = 2.
Add the subproblem with r = 0, C = 7, and x44 as the
branching variable to the subproblem list.

Step (4): p=2
X114 = 1,y4= 1.

Step (1): r=-=5/3, C=6, yy= ys= 1, Xp=xy=1
Xj4= Xg4= Xs4= 1.

Step (2): C*=6, y3=yi=1, xh=xh=1
Xfy= x4 = x3= 1.
Remove the subproblem with r = 0, C = 7, and x44 as the
branching variable from the subproblem list.
Step (4): p=13.

Step (5): Stop.

Schematically, the solution procedure can be summarized by the following tree:

Clearly, we have that chips 2 and 3 are packed into bin 2 at a total cost of 4 (bin cost of 3 plus unused
penalty of 1) while chips 1, 4 and S are assigned to bin 4 at a cost of 2 (bin cost only, since capacity is
used entirely) yielding the overall solution cost of 6.

4. COMPUTATIONAL RESULTS

In this section we present a summary of what was, in total, a rather substantive computational
testing activity in this research. More precisely, we shall present empirical results relative only to the
behavior of the approximate lagrangian models on randomly generated test problems. We remark,
however, that additiona! tests were made for both the column generation and subgradient models in

which the results were almost uniformly poorer than when the approximate lagrangian approach was
examined. Hence, the stated concentration in this section follows accordingly.
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To the extent that we present results for the case of only the approximate lagrangian models the ,
following delineation must be made in order to properly interpret the ensuing tabular summaries. ]
Recall that in the model given by (LD6) the dual multipliers specified by the vector r were free in
terms of sign distinction. Interestingly, if we restrict the sign of these multipliers such that r < 0,
there is little effect in certain problem ranges, on overall computational effort. However, the mean i
number of dual iterations increases, thus indicating that the average price per dual iteration is less with g
sign restriction imposed than without such restriction. The following tables are organized around this !
differentiation. |

. In all tables, each of the parameters describing (GBPP1) are varied as dictated in the respective j

’ tables. In addition, for certain sizes, problems which were both correlated and uncorrelated (relative to 1
t,;) were generated and, in all experiments, two replicated at each level of n and m were performed. ;
For ease of presentation, we have coded the ranges of parameter generation as follows:

¢, ~ U (8, 10) (a)

¢, ~ U (40, 50) (b)

7 d~ U, 2) (c)
3 d,~ U (5, 10) (d)
t, ~ U 4, 6) (e)

,~ Ua,9 (f)

; p=00 (g)
) p=205 (h).

Note that the space for ranges on the parameter w, is given directly in the tables since these ranges
were generted in such a way as to preserve a constant average number of bins used in any solution. All
computational experience reported was performed on a CYBER 74 computer.

In Table 1, a summary of the performance of the approximate lagrangian approach is presented
for both the case of a restriction on the sign of the multiplier vector r and the case where r is not res-
tricted. Calling these problems set /. we find that for cases n =10, m= 35, 7, 9 and n = 15,
m = 5, 7, 9 the procedure averaged less effort per problem where no restriction or r was imposed. For
the remaining levels of #n and m (in Table 1) the opposite outcome occurred. Observing that problems
: at the larger values of n dealt only with the "random" case of p = 0.0, there is obviously some cause for
§ suspicion regarding the effect on the algorithm relative to "harder” versus "easier” problems. To lend
some insight into this potential dichotomy in performance, a second problem set was run for those
| problems in Table 1 where the parametric range was fixed to coincide with those (the exception is with
capacity) for the case n = 25 and m = 5. Note in Table 2, the cases of n = 25, m = 5 and n = 20,
| m = 7 are excluded since clearly, they would appear as in Table 1.

In observing the average computational effort required per problem solved in problem Set II,
there does appear to indeed be at least empirical evidence that the restricted case out-performs the case
when r is subject to no sign restriction. Of course, if sufficient interest existed for making more solid
any claims regarding the performances of both cases, a substantially greater experimental design than
that used in this work would be in order. Regardless, to gain some insight into computational perfor-
mance on larger problems we have applied only the restricted case to a third problem set. The results
appear in Table 3.

An overall examination of the computational results reveals that sizeable effort can be required in

a variety of instances. At the very least, there is substantial disparity in minimum and maximum
requirements. Clearly, subtle parametric changes in problems otherwise identical can create vastly

different computational demands.
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TABLE | — Approximate Lagrangian Procedure — Results for Problem Set |

N T R - - -
I’roplcm i Problems | Parametric | Bin Capacity. l Timet Average | Average Number
Size | Atempted | Ranges W, l 4 (Seconds) Number ! of D'ual
ln m | Solved* | " | of Nodes Iterations
: ﬁ"—_‘FA | restricted 2780 91.531 101.625
105! ea abede. | w ~ U019 (0.082, 26.998) ' '
64 f.g.h w, ~ U(20. 30) Lots
ict ’ 34.28 484
unrestricted (0.079. 16.802) 1 53.48
estricted 4515 97.375 110.094
restricte: - N
0 7 64 abcde | w ~ U, 19 (0.058, 24.228)
64 f.g.h w, ~ U(20, 30) 3740
i ’ . 75.
unrestricted (0.124. 17.463) 52.250 5.563
tricted 8.580 174.656 184.750
restricte : :
10 9 64 abede. | w, ~ UG 19 (0.155, 82.342)
64 f.g.h w, ~ U(20, 30) s97s T
unresiricted (0,422, 39.819) 68.156 98.000
tricted | lam 174.107 213.750
restricte . .
15 s 64 abede, | w ~ U6, 26) (0.529. 130.665)
56 f.g.h w, ~ U(33. 43) 12,707 i
i ' 6.071 9.107
unrestricted (0887, 118.463) | 6 1 109.1 {
tricted 12917 | 157.452 “ 190.097
restrictes . .
s 7 32 abcde. | w ~ U6, 26) (0.402.95.63%)
3 f.g w, ~ U(33, 43) 12 503
ict : 78. 142
unrestricted ©839. 61.382) 806 128
tricted 25.434 327.516 349613
restricie: . .
15 9 » abcde. | w ~ Ull6, 26) (1.040. 95.220)
3! f.g w, — (33, 43)
unrestricted © 56290:20 58) 87.516 159.097
) 569, 85.65
tricted 22.175 l 129.000 170.013
restricte . :
0 s 32 wbede. | w ~ U4, 34) (2,182, 93.355)
24 fg w, — U4, §5) 4268
i ’ 51.167 76.
unrestricted (5.571. 139.323) 151.16 276.583
23.833 [
restricted (1.476. 85 540) 135875 282438
20 7 16 ab.cd.e, w, — U(45, 55) I
16 f.e T
. 41.482
112.500 186.4
B unrestricted (5.616. 121 813) S 38
tricted 14.372 53222 81.111
restricte ) .
5 s 16 abede, | W, ~ U(S8, 68) (2.386, 59.413)
9 f.g
. 35.381
i stricted 86.111 186.778
[ [ unrestneted 1 us.7e2, 84.890)

*A maximum of 1000 nodes in the branch-and-bound tree or 200 seconds of execution time (whichever was reached first) were
used as cutoffs.
t Average {(minimum, maximum)
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TABLE 2 — Approximate Lagrangian Procedure — Results for Problem Set I1

NAVAL RESEARCH LOGISTICS QUARTERLY

‘rProplem Problems Parametric Bin Capacity, Time Average Average Numberﬂ;
Size Attempted Ranges W, r (Seconds) Number of D_ual !
n m Solved of Nodes Iterations !
_ 0.937 B
T 16 abcde, | w ~U(20, 30) | restricted (0.082, 4.697) 30.250 2063
16 f.g + ----
unrestricted 1209 20.125 29313 !
L (0.201, 3.253) Sl B )
_ 2.844 ‘
07 16 abede, | w ~UQ0, 30) | restricted ©.190. 13.784) | 33875 1 68688
16 f.g —
, 3.690 ‘
unrestricted (0.276. 17.463) 42.750 77.750 |
) 4.409 !
10 9 16 abede, | w ~U(0, 30) restricted €0.291. 38.743) 85.250 93.625 |
16 fg —

_ 4776

unrestricted (0.422. 32.535) 54.500 80.875

i , 5.115
15 s 16 abcde, | w,~U@33, 43) | restricted (0.620, 18.384) | 3750 87563 |
16 f.g +
) 8.936 |
| unrestricted (1.120. 45.392) 46.375 95.688 |
-

i ) 7.770

\ 15 7 16 abcde, | w ~U(33, 43) | restricted 0402, 22011 | 76873 121813

‘ 16 f.8 -
i . 9.811 \ ‘
unrestricted (1.390. 23.729) 50.250 96.313 j
A 9.877 1
159 16 abede. | w ~UQ3, 43) | restricted (1424, 31.649) | 83125 91780
16 fg S —
_ 13.860 |
| unrestricted (3.561. 74“0)_4 21.87§ 44.438 4\
4 20.226 |
0 s 16 abcde, | w, ~U@s, 55 | restricted (2182, 63068) | 18600 17067 |
15 f.g ———-~~ﬁ—~—---;
, 42075 i i
L unrestricted J (5.571. 138.323) 120.200 210.133 |
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TABLE 3 — Approximate Lagrangian Procedure— Results for Problem Set 111 (r restricted only)

O (e e A A N
Problem | Problems . S Average Number
are - - A , ‘
L Size Auempted : Pdmmmru 1 Bin Capacy. | Time | Average Number j of Dual i
! | Ranges w, (Seconds) f Nod
| n m | Solved | | f i of Nodes ' lterations |
F::::::: phaasssss—— ——— ::;; B T ,::1:;::::;; I IrIzizIooToTuITR :%::::_:: TrzzzI=aT
T2 9 e WS UEs sy 26 568 , 90 000 ! 97938
| i 16 ’> | (340290 836) | |
_______________ . L Qs02.908%6) ]
Ty 73 [T T T 47984 130167 207750
{ |
Lol te oS usersy
s 9 8 \ I w~ UIS8. 68) 15.493 1 115.750 1 125.250
| | ! i i : .
[ 1 _,_§-_4_71 ] S R (,(,’_4,2,0:,2,1_0,9,!’_VJ_,,,,,.,“,,,,-_,4_—*__-__,,“___1
C300 S 8 D abedf. | ow~ U(70_80) | 23617 . 202.750 ; 271875 ;
‘ ‘ 8 g (14.446. 45.554) ‘ ?
o b R B —— -t —
D301, 8 , abedl | ow~ U0 80 37.407 | 374.250 | 480.250 .
i > 8 [ 110793, 91077 !
S SN NS UL UL S P S S S
T3 TS TR Tabedl | w~U@on T suaed T 3aIs0 | 6s631s |
i {8 g | (10.667, 100.373) ‘ i
f’m 5 | 8 D abcdf. W~ U095, 105) | 49 607 148 000 i 180500 |
; 6 8 | (31770, 63.353) i i
a5 5 4 | abdfg | w~ U120 130) | 92.894 x 364.500 426250 !
} [

| | (66.278. 125.692) |

Lo b e 166278 s, L

Naturally, the performance of the procedure(s) tested here would be enhanced by direct compari-
sons with alternative approaches. The difficulty, however, is that such experience does not appear to be
available relative to (GPBB1). Of course, various special cases have been examined as suggested earlier
and to this extent the procedures tested here may be applied. This sort of comparative analysis would
suffer, of course, since the attack presented here would carry unnecessary computational burdens not
required in treating such special cases. In short, the models we have developed most fully and which
have been tested in this analysis cater to the full interpretation of (GPBB1). Resolution of special
cases, including the classic bin-packing problem, can be accomplished more efficiently by aliernative
means.

5. SUMMARY

Our entire concentration in this paper has dealt with the optimization of a combinational problem
we have referred to as generalized bin-packing. Of course, one does not require the experience of this
treatise to realize the difficulty of the problem; however, the empirical evidence gathered in this
research does indeed tend to dismiss any suspicions to the contrary. In this light, a logical avenue
would likely be to pursue some nonexact approaches to the problem in much the same way as has been
done for the classic bin-packing model.

Of the various heuristic attacks we have postulated and examined, most were constructed directly
from optimization procedures. Stated alternatively, specific heuristics involved suitable refaxation of
the optimization models presented here. In other cases, nonexact schemes were developed as direct
extensions of the any-fit heuristics discussed in Section 1. In general, procedures of the first category
were not (empirically speaking) particularly noteworthy in that computational effort frequently rivaled
that of the optimization attacks used. In the latter case, the more ad hoc procedures often generated
solutions of almost arbitrarily poor quality resulting largely from an inability to make allowances for the
unused capacity penalty.

It is worth adding that all testing of heuristic developments has been empirical in that no worst-
case analysis was pursued. That this was the case is based not on a lack of interest per se but rather on
the view that such results may be void of the sort of insight presented by similar results for the classic
bin-packing problem. Again, the issues here would appear to relate to the arbitrary cost parameter
structure of the problem.
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ABSTRACT

A mean-variance portfolio selection model with limited diversification is
formulated in which transaction and management costs are incorporated as the
sum of a linear cost and a fixed cost. The problem is a fixed charge integer
programming problem soived by hypersurface search using dynamic program-
: ming. Fathoming is performed in the forward pass of dynamic programming so

. that values of the state variable which correspond to infeasible solutions are el-
: iminated from the tables. This logic permits the solution of problems with 20-
30 possible investments.

INTRODUCTION

This paper presents a portfolio selection model for the small investor. A basic reference for the
portfolio selection problem is the book of Markowitz [4]. He presents the portfolio selection problem
in which there are two criteria for the best portfolio: maximum return and minimum variance. Port-
folios are called efficient if they meet either of the following conditions: if for a fixed variance the
return is maximized, or if the return is fixed and the variance is a minimum. Sharpe [7] subsequently
introduced some simplified models in which returns on securities are functions of the performance of
one or more market indices. Recently Pang [6] has formulated and solved the portfolio analysis prob-

| lem for large scale continuous variable problems by using a modified version of the parametric principle
pivoting algorithm for the class of multiple index portfolio problems with positive covariance matrices.
In the present paper we follow a different line of research. It has been shown by Jacob [3] that the

f solution of portfolio analysis problems by standard techniques generates answers which are inappropri-
ate for the small investor because of the large number of positive amounts of different investments
which they contain. The individual investor might prefer to limit the total number of his investments so
that he does not have to pay extra charges on odd-lot sales and keep track of the performance of a great
number of different securities. Jacob formulated several single index models of the portfolio analysis
problem in which the total number of different investments is contrained. This results in an integer
programming problem. Faaland solved another integer limited-diversification model parametrically 1o
generate the set of efficient portfolios [2]. Our work extends his model by allowing transaction and
management costs to be expressed explicitly as the sum of linear and fixed charges in the objective
function. Then we use a technique for nonlinear integer programming which is based on dynamic pro-
gramming [1].

Notation for the Limited Diversification Model

Let us follow the notation for Sharpe’s single index portfolio model. The return for security / is
R; and
J
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R =E +8,I~ED) +¢,

where £, is expected return on security j, / is the current value of the index and E(/) is its expected
value; B, is a parameter and ¢; is a random error term with mean zero which is independent of /.
Define o2(/) and a'(e,) as the variances of those variables and assume that cov(e,, €,) is zero if i = j.
Following Faaland, the integer problem in which the maximum variance B, is a parametric quantity is

(1.1)  maximize Y G4,

=1
n 2 n
(1.2)  subject to YaX| +3 QX< B
=1 j=1
(1.3) Ein <k
e
(1.4) At most T of the x; may be positive
(1.5) x; 20 j=1....n
(1.6) x; integer j=1....n
Letusdefine ;= E/k, j=1, ..., n
a=B,c)k j=1 ..., n
Qj=crz(ej)/k2, Jj=1 ..., n
B=oclt=1..,p

The new problem includes a commission charge with a fixed minimum plus a component which is
linear in the investment amount. Then (1.1) becomes

n
(1.7)  maximize Y (= V) x, — Md(x))
j=1
where V; is the linear charge, M, is the fixed charge, and
lifx, >0
805) =10 ifx = 0.

THE INTEGER ALGORITHM

The problem described above (1.2)-(1.7) has several difficult aspects. In (1.2) the representation
of portfolio variance is a nonseparable function. One method which can handle such functions is a
nonlinear integer programming technique called hyperplane search by dynamic programming. Let us
outline this approach. The general method is to solve a sequence of problems of the following form
which differ only in the value of the right hand side by dynamic programming.

maximize z =X f,(x)
L f(x) =z
0S [ <x,<u j=1...n

x, integer J=1L...n
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This problem can be used to identify all integer points on any hypersurface level z,. If =, is an upper
bound on the objective function value, then the solution of the single dynamic programming problem
above can be used to generate all integer points upon the hypersurface level L/, = z, and for all right
hand side values less than z;. In fact it gives information as to which vaiues of z contain integer points
so that hypersurfaces with no such points need never be considered, see [1]. We can use this tech-
nique on (1.7). Then the constraints of the original problem (1.2)-(1.6) are used 10 test the feasibility
of any candidate integer points, so that the intractability of (1.2) can be overcome. If we choose the
sequence {(z,} in decreasing order (or generate integer poinis on hypersurface levels with decreasing
objective function values) then the first feasible point is optimal. If {z,} is decreasing then this method
is a partial enumeration since no integer points are considered which have objective function values less
than the optimal solution. This strategy is a direct application of the hyperplane search method to lim-
ited diversification portfolio analysis. The complicated form of the objective function (1.7) presents no
difficulty.

A Second Approach

Since the straightforward method given above requires too much storage, the usual method of cal-
culating the dynamic programming recursion tables ("pulling") was changed to a second approach which
uses a technique called "pruning” or "fathoming” to reduce the size of the tables by allowing infeasible
points to be eliminated during the forward pass. In this way, the constraints (1.2)-(1.4) can be used 10
reduce computation and storage. The idea assumes that coefficients in the constraints are positive.
Under this assumption, if we have a partial solution for which the portfolio variance constraint (1.2) (or
(1.3) or (1.4)) is exceeded, then we "prune” the entry or value of element x, which caused the infeasi-
bility since no completion of that partial solution will be feasible [5]. This method of fathoming
reduces both the storage and computational burden of the algorithm. It supplants the method of check-
ing partial solutions for infeasibility at every stage in the backward pass of dynamic programming.

Implementation of the Parametric Right-Hand-Side Feature

The problem (1.2)-(1.7) has a parametric right hand side so that efficient portfolios are generated
for various upper bounds on portfolio variance. Previous work (1] has shown that such parametric
problems can be solved from a single dynamic programming problem using hypersurface search,
because of a similar property obtained in any dynamic programming solution. If an allocation problem
is solved for a given right-hand side value, then by completing the last return function table for all
values of the state variable all problems of identical form but with smaller right hand side values can be
obtained.

Computational Results

The model selected for computational results is that given in (1.2)-(1.7). a nonlinear, nonsepar-
able parametric fixed charge problem. Problem coefficients were generated randomly for various
numbers of total possible investments from 10-30. The times for computer runs on the CYBER 73 are
given in the following table of summary statistics. For each problem size, statistics are averaged for ten
problems with random coefficients. The second through the tenth problems are parametric versions of
the first and therefore take less time.

This problem is highly specialized. Therefore it is difficult to find computational comparisons with
it in the literature. However some recent work on a linear integer bicriteria problem [8] may be
relevant. Villarreal and Karwan have given results for three ten-variable problems with four constraints
which are solved in an average of 18.43 CPU seconds each on a CDC 6400 computer system. Their
algorithm generates all distinct efficient points {an average of 7) in comparison to ours which generates
efficient points according to ten desired levels of portfotio variance. These authors obtain additional
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TABLE | — (u#r in CPU Seconds)

Portfolio

Variance = B, n=10 n=20 n =30
1.5 0.1/.06 6.2/7.3 34.74/36.43
1.35 .00/.00 .017.01 .01/.02
1.2 .01/.01 .08/.19 .08/ 15
1.05 .00/.01 .04/.09 .54/ .85
9 .00/.01 .28/.49 .19/.44
75 .01/.02 .43/.64 2.59/4.62
6 .017.01 | 1.12/2.06 .81/1.20
.45 .017.02 | 1.04/1.68 | 8.78/11.47
3 .02/.03 | 2.38/4.29 3.64/6.85
15 02/.02 | 2.36/3.16 | 11.96/13.32

improvements with various hybrid dynamic programming recursions, and get their best times (1.19
CPU seconds for ten variables) with a branch and bound approach. Our method seems competitive,
particularly when the nonlinearities and nonseparability of the portfolio problem are considered. along
with the larger size of problems solved. It is difficult to make a more exact comparison because of the
different structure of the problems in (8) and the portfolio problem.
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ABSTRACT

In this paper the n/\/r, > O/Z w;(, problem under the assumptions of
J

nonpreemptive sequencing and sequence independent processing times is inves-
tigated. After pointing out the fundamental properties, some dominance
sufficient conditions among sequences are obtained and a branch and bound al-
gorithm is proposed. Computational results are reported and discussed.

1. INTRODUCTION

The one machine scheduling problem has been studied extensively under different hypotheses and
objective functions. Nevertheless, in the literature, emphasis is laid upon the case with equal ready
times, no imposed due dates and flow time (or equivalent function) as objective function. In this con-
text the problem solution is trivial since the Smith’s rules [14], well-known as shortest processing time
(SPT) rule and weighted shortest processing time (WSPT) rule, provide an optimal solution. Accord-
ing to these rules, jobs are sequenced on the basis of a preestablished order of their processing times.

In {71, (8], [12], [13], and [15], a more sophisticated cost function, such as weighted tardiness, is
adopted for it turns out to be a suitable model for many real problems in which jobs may be considered
available simultaneously for processing on a single machine in order to minimize the total sum of the
delays with respect to their due dates. One of the most constraining assumptions is equality of the
ready times of the jobs.

As a matter of fact, whenever different ready times are to be considered (r, 2 0). the previous
models and the corresponding algorithms are no more adequate.

The case r, 2 0 has been recognized in research on other single machine problems, where due
dates were also taken into consideration [1], [5], and [10]. However, in these works, the authors inves-
tigate the properties of a rather different cost function given by the maximum lateness (or tardiness)
with weights w, = 1 for all .

In [2], [3]. (4], and [11], refer-ing to scheduling theory application 1o air traffic control, minimiz-
ing total weighted waiting time in one machine scheduling problem with unequal ready times has been
considered.

An implicit enumeration procedure has been developed and a simplified algorithm (w, = 1,¥)
has been implemented in order to work in real time. The interested reader may address to references
{11} and 4] for a complete discussion of this application. The aforementioned scheduling problem,
although simple in these terms, is not trivial and it may be proved to be NP-complete [9]. The main
difficulty arises from the fact that, since r, 2 0, idle times may be inserted in the optimal schedule [6].
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In this paper, starting from the results obtained in previous works of ours [2], (3], (4], and [11]
the n/1/r, 2 0/ T w,C, problem, with no preemption allowed and sequence independent processing

7
times, is analyzed. The purpose is to establish some further dominance properties and above all to
present a much improved branch and bound algorithm. Computational results, obtained with this algo-
rithm, are also reported and discussed.

2. DEFINITIONS AND PROBLEM STATEMENT

Let ¥ = {jlj=1.2. .... n} be a set of jobs to be processed, one job at a time, on a single, con-
tinuously available, machine. For each job j, the ready time r;, the processing time p,, and the weight
w,, are given.

We call sequence on set K C N any permutation in K which is indicated with s,, being s, the
sequence on the void set. Completion of all jobs requires establishing a sequence
sy, = UnyJre -+ . Jia). When a job parameter is identified by the job’s position in a given sequence
rather than its index number, the position is indicated in square brackets. Thus C(;) means the comple-
tion time of whichever job occupies the jth position in the sequence.

Suppose now that a sequence is constructed by adding one job at a time, starting from position .
At any step, we have a partial sequence s; = (jy;. jr21. -.- . Ji)) of a job set K € N. It can easily be
verified that, in our setting, the completion time of such a sequence cannot be expressed only in terms
of processing times regardless of the order in which jobs are scheduled, since idle times can be inserted
[6]. This fact suggests some useful definitions.

_ DEFINITION 1: Given a partial sequence s, the earliest start time of a job j € K. where
K = N — K is the set of jobs not sequenced, can be expressed as

(1) 1;(s,) = max (r;, Cpyy)
with t,=r,. ¥j € N, if k = 0.
DEFINITION 2: Given a partial sequence s,, the completion time of a job j € K. C,(s;). can be
expressed as
(2) C/(Sk) = ’,(Sk) + pj-
DEFINITION 3: Let K be any subset of N with cardinality k, then the cost function associated to s, is
k
C*(s) = 3 wiCye
j=1

If kK = n, C*(s,) expresses the total weighted completion time of s,,.

Then. the problem can be formally stated as follows: Given a job set N, find a sequence s} such that
C*(s3) < C*(s,), ¥s, € Sy.

To fully understand the problem framework, it is suitable to introduce the reduced problem con-
cept. A definition of reduced problem may be found in references {7] and [15]. However, that
definition is given by considering the sequence completion time as computed regardless of the order of
the jobs. As pointed out before, this is impossible in our setting; a more general definition, which also
holds in our hypotheses, is the following.
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DEFINITION 4: A problem is said 10 be reducible if a partition (N,. N,) of set N exists such
that, if s}, s}, s3 are the optimal sequences with respect to C*(*) on N, N;. N,, respectively, it is true
that s = s{ s}

REMARK 1I: It is easy to prove that a given problem n/1/r, 2 0/T w;C; is certainly reducible if

J
a job set N, and a corresponding optimal sequence s; exist such that completion time of s, is less than
{or at most equal to) the earliest ready time associated with N,.

In [I1}] a simple decomposition method to transform a given problem into reduced problems is
outlined.

Therefore, without loss of generality, from now on, only reduced problems will be dealt with.

DEFINITION §5: Given a partial sequence s, a job set ¥ C K is said to be "dense" if any
sequence jy, jy. ..., Jn, on ¥ has no inserted idle times.

It is easy to verify that
J e Viff 1(s) < l’rllllrl Ci(s).
1

DEFINITION 6: Given two sequences s, and s, both belonging to set S, s, dominates s,. if and
only if, it is true that there exists an s,_, such that s s,_, = s, belongs to S, and

C*(s,) < C(s,ls,) for all s,]s,.

DEFINITION 7: Two sequences, s, and s, are equivalent
if C*(s%ls) = C*(stlsy).

REMARK 2: On the basis of the previous definitions it follows immediately that an optimal
sequence s, dominates any other one, and it is equivalent to all its own partial sequences s,,
k=12, ..., n

DEFINITION 8: A sequence is said to be an ECT sequence if it satisfies the earliest completion
time (ECT) rule, ie., if Cjyyyy=min C;(s), 0 < k € n—1.
jek

Ties are broken by choosing j with min ¢ and further ties by choosing j with max w, and, at last,
by choosing j with min j.

DEFINITION 9: A sequence is said to be an EST sequence if it satisfies the earliest start time
(EST) rule, i.e., if each actual job start time is such as

T[k+ll= mn_1 ,_;(sk)' 0 <k < n—1.
j€K

3. OPTIMALITY AND DOMINANCE CRITERIA

In this section a set of properties, which enhance the efficiency of the search for an optimal solu-
tion, is given. Some of these properties (specifically those resulting from Theorems 2, 3. 4, S and
Corollary 2) have already been demonstrated in a previous paper [11]. The other properties, expressed
as Theorems 1, 6, 7 and Corollaries 1 and 3, have here been carried out in order to improve the algo-
rithm performance. Extended proofs of these further properties are reported in the Appendix.
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THEOREM 1: Given a job set N and a partial sequence s, (k < n).if, for i € K

(a) f‘—s ﬂ.v; €K
W, "

(b) 11(31\') < lh(sl;)' h € E

then s,/ "dominates" s; .

Clearly, the property expressed in Theorem 1, in the case with w, = | ¥i, can be applied in the
following way: "Given a partial sequence s,, consider, among all the remaining jobs, job i with the least
processing time and then take out of consideration for k + 1th position, all jobs unable to start before
job i. This property, of course, appears to be efficient since earlier job iis able to start. For instance, if
job i has both minimum processing time and earliest start time, no other job may be considered for pos-
sible inclusion in the (k + 1)th position in the sequence.

COROLLARY [: An EST sequence of job set N is optimal if it is ordered according to WSPT
rule.

THEOREM 2: Given a job set N, a partial sequence s, (k < n) and two jobs ij € K If
r, 2 C(s), then s.i dominates s;/.

From this theorem it follows that is is possible to restrict search for optimal solution to the class
of active schedules {I].

In Figure 1 an example of the application of Theorem 2 is given.

K={h,i,1,m}

-

' ______ ____%z h,1 are candidates
: . A
:: Scheduled Jobs E ! E_l__] 1,m are not candidates
' 1
i [ ]
w55 S5 e

FiguRE 1. Example of application of Theorem 2: candidates to (A + Dth
position in the sequence.

THEOREM 3: Given s, and two jobs i, j € K, if

(@) w, 2 w,

(b) C,(s) > C(s0)

() wlC/(s) — Cls)l+wp, —wp, 2 (p,—p) T w
€0
where Qis the set K — {i. j}, then s,i dominates s, j.
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THEOREM 4: Given s; and two jobs i, j € K, if

(a) w 2 w,

(b) C,(s0) < Cls)
(C) w,p, — W/p, 2 [C,(Sk) - (./(sk)] 2 w; +8_| (p, - P,)
tek

. Z_w[~ wj— w,"

leK

then s,/ dominates s; /.

Properties resulting from Theorems 3 and 4 may be practically utilized in order to operate a
further selection within the class of active schedules. Of course, from a theoretical point of view they
could also be applied within the more general class of permutation schedules. It is easily seen that, in
general, the dominance concept, as expressed in Theorems 3 and 4, depends not only on the input vari-
ables (weight coefficients, processing and ready times) associated to the couple of jobs taken into con-
sideration but also on the input variables associated to the remaining jobs (specifically on their weight
coefficients or on their number if w, = 1 ¥j).

THEOREM 5: Given a job set N and two partial sequences xiyj and xjyi. If

(a) iyj and jyi have no inserted idle times

(b) [C,(X) - C,(X)] 2 w, + [W‘ - Wj] 2 4] + w}pi - W
1epP teP

> 8., 1400) - ()] T w

et
where Pis the job set of ivjand U the set N— P—{x}, then xiyj dominates xjyi
COROLLARY 2: Given s, and two jobs i, j € K. Let K be the set "dense,” if
(@ w, 2> w,
b 1(s) 2
(c) C,(s) 2 Cilsy)

then s, i dominates s, j.

I,(Sk)

THEOREM 6: Given a job set N and a partial sequence s.(k < n), for any sequence (s,ls,) a
lower bound C*(s,ls,) < C"(s,ls:) exists, where

n-k
_C_‘W(S,,IS/() = C"(Sk) + z W‘H,,Ck+,(sk)
=1

+

n~k-1 n-k
‘8_|[Ck+,(sk) - kal(sk)]
- i+l

(L]

!

- 8-1 [Ck+,(8k) - Ck*l(sk)” ‘ min(wk,,,, Wk+/).

being k + jand k + [ € Kwith r,,; € iy

The first term of the lower bound provided by Theorem 6 is, simply, the value of the objective
function associated with_the partial sequence s,. The second term takes into account that each job of
the complementary set K cannot start before its earliest start time. The third term takes into account
that processing times of the unscheduled jobs are not to be overlapped in the final sequence.
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An example of application of this lower bound is reported in Figure 2.

W 2 2 3748

............ LB
=]

[} [}

; ; ' hi

: : e

i : :

M L] 1 1

' 1

| ' On1~—t

5 : : 1

:' E E s H :;f—-—!. r——’oil
; : S |

. -~ . c c‘ c time
Q) ‘R ‘W 1 &

+WCH+WC +WC +0

w = - min (W, ,¥ )
€8 /8, ) =W Crat WaChqt Walnt ¥y €yt W16 % Opy mAR (M oWy,

+ 0O _-min (wh,wl) +0

1 - min (wi,wl)

11

FiGLRE 2. Example of lower bound computation for a partial sequence s;.

THEOREM 7: Let s? be a sequence on N such that, for 0 < k < n — |
(a) Tuwenn = Ciiy
(b) C(/(+” = mlg C/'(Sk)
jEK

(©) wyy 2 wiay

being Cy = r,. i € N, then s” dominates any other sequence s of the same set starting with job A
such as r, < .

COROLLARY 3: An ECT sequence, defined on a job set N and ordered according to nondecreas-
ing weights, is optimal if it has no inserted idle times and begins with the job having the smallest ready
time.

4. THE PROPOSED APPROACH

To solve the problem under study, an implicit enumerative procedure is proposed, based upon a
branch and bound concept. It involves a search along the branches of a tree, in which any node at level
k represents a partial sequence s, defined on a set X with cardinality k.

As a consequence, subsequent jobs in s, correspond also to a succession of nodes encountered by
going from tree root sy to node s;. For each node s, as illustrated in Section 3, a lower bound
C*(s,15,) on C*(s,ls,) is computed, and the current optimal solution is utilized as upper bound. At
each iteration, the node being expanded is called the current node, whose last job has the lowest
current value of earliest start time. A closed node is one whose correspondent partial sequence has
been dominated and, therefore, it will be no longer considered. To identify dominated nodes, some
elimination conditions based upon the previous theorems are then applied. In this way, the number of
nodes branching from the current node can be effectively reduced.
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The proposed procedure is a recursive one. In fact, whenever a partial sequence s, on N has been
fixed, the optimal sequencing problem of the jobs belonging to set K is identical to the initial problem
if their ready times are shifted so that none of them is less than C(s,).

5. THE ALGORITHM

The algorithm consists of three basic phases: initialization, branching and termination. Initializa-
tion involves defining initial value of the variables, determining an initial sequence and testing it for
optimality.

Branching is an iterative procedure. In each iteration, it generates the descendents of the current
node, eliminates closed nodes, updates the set of job candidales to successive position, identifies, as
next current node, that one having last job with lowest earliest start time, and computes the lower
bound for it.

The termination phase consists of identification of the optimal sequence s* and computation of
C*(s*).

Initialization
(1) Let Nbe the jobset {jlj=1,2. ..., n}. Define the corresponding parameter sets:
R = {I’|, Fae oo iy oo, I',,}. P= {p,, Py oo. pn}.
W=\w, w. .... W,) where r;.) € r; < 14

If r; = r;y) call jjob with min p,
Q) k=0, K=2, =9, E=N. C(Sk)=l'|.

(3) Construct an initial solution 3, by means of an heuristic rule (for example EST or ECT) and
compute C*(3,).

(4) Test initial solution for optimality by means of Corollary 1 and Corollary 3. If 3, passes the
test go to Step 22.

Branching
(5) Determine #(s,) = max {r,, C(s,)} and
jek
C,(s) = min {1,(s,) + p;}
1€K

(6) Form the set

D, = {jlj € K. ,(s) < Cp(s)}
(1) 1f D, = Kgo to Step 18

(8) Generate nodes s5,j, ¥j € D,k

(9) For each node s,/ dominated according to some of the Theorems 1, 3, 4, 5 (and Corollary 2
(if Step 8 has been reached coming from Step 19)), update set D by setting

Ds* = Ds,‘ =
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(10) Setk =k +1

(I1) If D, =&, ,set k =k — 1andgo toStep 16

Sk-y

(12) Set D, =D

=Dy — i s= sy K =Ash, K= N— Kwith j , = min 1,(s,_,)

1€ D
i

(13) Compute lower bound C*(s,)s)

(14) If C*(s,)s) 2 C*(5,) go to Step 11.

(15) Set C(sy) = 1; + p,-and go to Step 5.

(16) If k = 0, go to Step 22.

(17) Go to Step 11.

(18) 1If 1,(s)) = 1, ¥ € K, go to Step 20.

(19) Go to Step 8.

(20) Form the sequence s;$,_x, where s,_, is the sequence on K satisfying the WSPT rule.

(21) Set s, = s;5,_4 C*(5,) = C*(s,|s,) and go to Step 11).
Termination

(22) Set s} =35, and C*(s%) = C*(5,). STOP.

Figure 3 shows a synthetic flow-chart which illustrates the algorithm logic.
6. COMPUTATIONAL RESULTS AND CONCLUSIONS

The algorithm, previously illustrated, has been implemented on a Digital PDP 11/34 minicom-
puter.

Different series of tests have been performed by considering a given number of jobs » =10. For
each series the p, values have been chosen uniformly distributed over a fixed interval (1 + 7] and the r,
values have been chosen uniformly distributed over five different time intervals of growing length.
Moreover, for each fixed range of r;, the weights have also been taken as uniformly distributed over
ten different intervals of growing length. The resulits are fully reported in Table 1 while in Figures 4
and 5 are reported the diagrams showing the number of nodes generated versus max r; and max w;,
respectively. As it can be observed a significant increase in all the parameters is met whenever weight
coefficients tend to be unequal. In particular, computational results show that changes in the observed
parameters are relatively less dependent on the width of the weights range. Rather, these changes seem
to arise whenever a mere difference among the weights is considered. Flgure 4 and 5 show this
behavior for the number of nodes generated.

Nevertheless, the computation time, in the worst case, does not exceed a few tens of seconds,
even though a fast computer has not been used.

A last remark, involves the fact that the typical behavior (bell-shaped), observed in [4] when
= 1, M|, is confirmed also if w; are distributed on a fixed interval (Figure 4).

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 29, NO. 1., MARCH 1982

B ——— . — »




SCHEDULING SINGLE MACHINE TO MINIMIZE TOTAL COMPLETION TIME

INITIALIZE AND
DETERMINE HEURISTIC
SOLUTION AND ITS COST

{opTIMALITY rzs'b—gfo

NO

SET HEURISTIC SOLUTION
| AND ITS COST AS OPTIMAL

SET HEURISTIC SOLUTION
AS BEST SOLUTION

®

GENERATE THE SET
*DENSE" Vi OF NODES
8 j AT LEVEL k+1

Vkli

UPDATE V), ACCORDING
TO THEOREMS:1,3,4,5
AND COROLLARY 2

TAKE OUT FROM Vi.1
JOB j' WITH MINIMUM
EARLIEST START TIME

AND SET:®y =sy-1)
K={sy}, K=N-K

LOWER BOUND
ON s) » COST OF
BEST SOLUTION

d)uo

NO NO

‘ STOP ’

YES

ARE EARLIEST START \
TIMES OF JOBS OF K
ALL EQUAL

YES

FORM THE SEQUENCE 8,_j
OF JOBS OF K
ACCORDING TO WSPT RULE

i

REPLACE BEST SOLUTION

WITH .n’sk'n-k

IS

YES

SET BEST SOLUTION
AND ITS COST AS
OPTIMAL SOLUTION
AND OPTIMAL COST

FiotRE 3 Flow chart of the algorithm

VOL. 29, NO. 1, MARCH 1982

NAVAL RESEARCH LOGISTICS QUARTERLY

SOLUTION AND OPTIMAL COST




b 160 L. BIANCO AND S. RICCIARDELLI

TABLE 1| — Summary of the Results in the Case n = 10 and Range of p, = 1 = 7.
Number of Tests for Each Pair of Intervals Relative
tor; and w; = 100. Total Number of Tests Performed = 5000

Range of r, 1+ 20 1+ 30 1 + 40 1+ 50 I+ 60 \

Range —r T R R S|

[JW a {b c a (b < a|b ¢ a | b ¢ Jalb | ¢!

R R 27118 1145130 1 26 | 128 124 | 22§ 95|16 1130 75 1S ‘[ 15‘[ 68,

! 1+12 44 |25 222 {142 | 29 | 177135 | 24 | 123 28 | 22| 96 24 | 20 | 86

| 1+14 42 {2 (22146 | 3219 {40 28 | 133{ 31|22 98( 25 20 ' 86!

e | 1+ 16 4412512290049 ]33] 1944132141 i29] 22010 1125] 19/ 881
- l 1+18 44 | 25 | 238149 30 ] 19allas!32]1s 291251 99 " 21 " 20! 88
‘ 1+20 47 127 [ 25 ([ 48 | 34 | 203144 | 34 | 146 30 | 23 99 {2620 | 88,

1 =22 47 | 26 | 255 ({55 (391 22 41| 34| 149 31 | 25 21 21 | 89

| 1+24 46 1271251/ 48 | 32 ( 20210} 43 ] 29| 1481l 28| 23 |01 li 2 211 87

| 1+26 a8 126 | 250 ([ s2 37 [ 21afla0 |31 139027 22 71l 25 19| 88!

) 1+28 a1l 2s | 256 (52 {35 | 212 40| 32] 136 301 25 l 101 H w1 22187l

Note: For each range of r; the columns a.b and ¢ are, respectively, the average number of nodes generated. the
average number of nodes examined before optimum is reached. and the computer time in seconds.

Average number of Number of nodes generated
nodes generated
’ ro=1-130
S0 50
) r=1-20
40 40 r=1~430
30 30 == 50
ro=1- 00
I 20 20
104 10
Maximum v, Maximum H,
20 30 40 50 60 1 2 3
FIGURE 4. Nodes generated versus maximum ready time. FIGURE 5. Nodes generated versus maximum weight

In conclusion, the proposed algorithm appears to behave in a satisfactory way, at least when the
number of jobs does not exceed 10.

However, to fully evaluate the algorithm performance, more extensive tests, by increasing the job

number and the width of the weight ranges, by considering also processing time ranges of different
width and by making use of a fast-time computer, should be provided.
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APPENDIX
Proof of Theorem 1:

Consider a schedule s, = s;s,-, having 4 in position kK + 1 and / in position y > k + 1. Let s;
be a schedule that differs from s, only in that job j is interchanged with its immediate predecessor j in
position v — 1. The first (y — 2) jobs have exactly the same completion times under s, and s, and.
therefore make the same contribution to total weighted completion time.

Schedules s, and s, differ only in the completion times of the (n — v + 2) remaining jobs.

As far as the last (n — v) jobs are concerned, which are the same in both sequences, it can be
derived that
n n
) AC*() = 3 wiiCils,) = 3 winCinls, 2 0.

=g+l {my+1
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In fact, by assumption b), it follows that
C1(s,) = max (Cy_y, 1)) +p; + p;
Cyils’y) = max{(C,_y + p), r}+ I
where j is the job in position y — 1. Hence, it is easy to verify that
Cyilsy) 2 Cy(s,)

from which the (1) immediately follows.

Let’s examine now contribution of jobs 4 and i If we call 1 = Cy,_;(s,), then their weighted

completion times can be expressed by the following:

Under s,:
w,C; = w—)Cpm) = wiimax (s, r;) + p;)
w,C; = w(,1Cpy) = wimax (¢, r;) + p, + p);
Under s,,:
w,C; = wi,)Cpyy = w;{[max (r + p), r]] + p}
w,C; = wiy_1 Cpymny = w(t + p)),

since, by assumptions b), r, € 1, € 1, < .
Two cases exist:

M <t

Eliminating common terms, from the (1) and assumption (a), it follows that

C*(s,) — C¥(s,) = AC*Q) + wp, —wip, 2 0

) >0t

In this case
C*(s,) — C¥(s,) = AC*(Y) + w;(r; + p)) + w,(r; + p + p)
- willmax(t + p), r,] + pj} — w,(+ + p).

Two subcases are to be considered:
(2a) r, > 1t + p.
From this and inequality (1) it follows that
C*(s,) = C*(s,) = AC*() + w (r;,+ p;— 1) > 0
b)) r, < 1+ p.

In this subcase, it is easy to verify that

C*(s,) = C*(s) = AC*() + (w, + w) (r, — 1) + (wp, — w;p) > 0

since the first and third terms of the sum are nonnegative, by (1) and assumption (a), respectively, and

the second term is positive, being r; > +.
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Hence, in conclusion, s, represents an improvement over s,. One could repeat the interchange
operation on s, by shifting job i backward into position y — 2 and advancing the corresponding job into
position y — 1. In this way the new sequence obtained is better than s,.

By induction, it is possible to repeat this operation on s, until job i reaches position & + 2. Then
it follows that a_partial sequence s, hi dominates every other partial sequence s hj, where j # # and / is

an element of K.
To complete. the proof let’s consider now as schedule s, the one with jobs » and i in the (k + 1)th
and (k + 2)th positions, respectively.

Therefore s, differs from s, in that job jis in position k + 1 and job A in position & + 2.
In this case, since 1 = C;)(s,) can be < r,, only the completion times of s, must be rewritten as

follows:

Under s,,:
wyCp = Wie21Cresz) = wilmaxlmax(s, r,) + p;, .1 + p,)

w,C, = Wi Clirny = wilmax (e, 7)) + p}.

Three cases exist. Cases (1) and (2) have already been examined. Hence, one needs only to

analyze the following:

3) 1<,

From assumption (b) and definition of 1, it is also true that r; < r,. Hence,
C*(s,) — C*(s,) = AC"(k + 2) + w, (r,, + pp) + w;{r, + p, + p)

= w, {{max (r, + p), r,] + g} = w; (r; + p).

Two subcases are then to be examined:

(32) r, 2 r, + p,.
In this hypothesis it follows immediately that
C¥(s,) — C¥(5) =AC*k + D)+ w(r, +p,— 1) >0

(3b) rp, < ri+op.
[t is easy to verify that
C*(s,) — C*(s,) = A
since all terms of the sum are nonnegative by (1), assumptions (b) and (a), respectively.

C¥(k +2) + (w, + w) (r, — 1)) + {w;p, — wpp) )>=0

In conclusion s, is better than s,.

Hence, since s, #i dominates every sequence with s; h fixed and s, ih always dominates s, Ai, it fol-

lows that i dominates 4 in position & + 1. Q.E.D.

Proof of Corollary 1.
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It follows immediately from the previous theorem.

As far as theorems 2, 3, 4, 5 and Corollary 2 are concerned, they have been proved in [11].

Proof of Theorem 6:

It can be immediately seen that, for k = n, C*(s,) = C"(s,). Then it is only necessary to prove

that for every k, C*(s,ls,) < C*(s,[s¢41).

- C*(s,1s) and C"(s,|sc+1) can be expressed in the following way:

where

C*(s,l5041) = C'(s 5640 + C (55541
C*(s,ls) = C'(s,15,) + C (s, 0)

n—k-1
C'(s,l541) = C¥(5) + w1 Ceai () + 3 Wirrw;Crre (Scer):
=

n—k-1 n—k

C (s, l5641) = 2 2 {8—1[Ck+j(sk+l) ~ terr (Seip)]
j=3 =t

=8_1 [Cs j(sk41) = Crsi (D) min (wy o wiey s

n—k—1
Q'(s,,lsk) = CW(S;() + wk+le+l(sk) + 2 wkHﬁC“Hj(sk)
J=1

n—k
+ 2 {8—][Ck+1(5k) - ’k+l(sk)] - 5_] [Ck+l(sk) - Ck+/(Sk)]}.
=2

* min (Wepq, W)

n—k~-1 n=k
_C“(Snlsk) = z 2 {8_[[Ck+j(sk) - ’k+l(sk”
J=2 Imj+1

- 8_|[Ck+j(5k) - Ck+l(sk)]} min(wk+j, Wk.,./)‘

Therefore, we will have:

Recalling that / = j+1, the generic term of the difference can be expressed as follows

n—k-1
g'(sn'skﬂ) - C's,ls5) = 2 wk+l+j{Ck+1+j(5k+l) - Ck+l+j(sk)]
j=1

n—k
-~ Z {S—I[CIH-](SI() - 1k+/(sk)] - 8_)[Ck+|(5k) - Ck+l(sk)]}-
1=2

- min (wg, |, West).

Wk+I[Ck+I(Sk+I) - Ck+l(sk)] - {8_|[Ck+l(sk) - fk+/(5k)] +

“6_1[Ck+|(sk) - Ck+l(sk)]} min(wkH, W,H.,).

Let us consider the possible cases:

NAVAL RESEARCH LOGISTICS QUARTERLY

(a) Ck+| (Sk) < tk+l(sk)
(b) f/H./(S;‘) < Ck+l(sk) < Ck+,(sk)
(c) Ck+|(sk) > Ck+l(sk)
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In case (a) it can be immediately verified that the generic term is equal 10 0, while in case (b) and
(c) it can be expressed, respectively, as follows:

(0) Wi (Coss (sisy) = Coi (51 = [Crii (5) = vy (s )Y min (wyiy, wis))
2 0, since [Couy(8i41) = Cony (5] = [Cruy (s0) = fey (515
(©) WertlChri(sier) = Cesr(8)) = prey * min Wy, W) 2 0,
since [Cysy(5i4+) — Cuns (8] 2 prsr
Then
C'(sl5041) — C'(s,1s) = 0.

Let us consider now the difference C (s, |s¢+1) — C “(s,1s,). Calling
the generic term ¢, ~ ¢, we have:

Ck+1 = {S—I[Ck+j(sk+l) = (s = 5—1[Ck+, (s+1)
_Ck+[(sk+])” n‘nin(wk_._j, wk+l).'
Ck = {S—I[Ck*'j(sk) - ’k.H(Sk)] - 8—|[Ck+j(sk) - Ck+[(sk)]-

* min (wyey;, Wi,

The following cases can arise:
(a) rk+l(sk) < Ck+l(sk)
(b) Ck*l(sk) < ’k+/(sk)

(C) IHJ(S,() S Ck+|(sk) < tk+l(3k)-

Case a). According to the hypothesis
ties; (Siear) = i (8i) = Ciegy (5
and then

Ck+1 = {Pk+j - 5—|(Pk+j - Pk+/)} min (wk+j- Wit1)

Two subcases are possible:

(ay) If pry; € psy. then

Chtl = Pr+j {min (W, w1
0
%= (Crsy (1) = tear (s Imin G o Wiew )
Therefore, ¢4y — ¢ 2 0.
(ay) If pyy; > Piss. then
Ce+1 = Pk+,{min(wk+], Wk+l)}

0
C = pk+’(min (wk+j' Wk+/)}
[Ck+j(sk)—tk+,(sk)]min(wk+_,, W,H,/)

Therefore, ¢, — ¢ 2 0.
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Case (b). According to the hypothesis we have
beaj (8 = terj (sei1)s tear (8 = ey (sen)

and then ¢+ = ¢.

Case (c). According to the hypothesis we have
ters (Sear) = Craa (8) and 14, (s,) = t4,(8541).
Three subcases exist.
(c) Cis; (k) € iy (s¢41) from which follows that
Ces1 = ¢ = 0.

() tewi(sie) < Crajsiar) € Cera(sian)-

In this case
Ce+1 = [Ck+j(sk+|) - fk+[(sk+])] min(wk+j, Wk+1);

0

%= [Ck+j(sk)-tk+,(sk)]min (wk+j' Wk+/)'
Therefore, ¢,y — ¢, = 0.

(e3) Crai(sx41) < Cryj(siar)-

In this case
Cr+1 = pk+,{min (wk+j' Wk+[)]

0
& =1 Dy {min (Werjs Wit

[CIH-j (Sk) —~ Ly (Sk)] min(wkﬂ», Wk+/)

Therefore, ¢, — ¢ 2 0.

Then, also, C (s,s,41) - C"(s,!s) > 0 and hence, in general, C*(s,[s;4)) = C*(s,ls), prov-
ing that C* (s,]s,) is a lower bound for (s,[s;).

Proof of Theorem 7.

First, we show that Cy)(s?) < C(s®), 1 < k < n. To this end let’s assume that the ready
times are modified, defining r/ = max(r;, r,), ¥j € N.

This assumption will not affect the start or completion time of any job in s or 9.
Let’s construct now a new sequence s,, reordering, for a given k, the first £ jobs in s; according
to their earliest start times (EST) defined on the basis of ready times r;. If more jobs have the same

EST, priority is given to the job with the smallest completion time among them.

Let's call the partial sequence so obtained s; and the complete sequence s,; clearly
Ciyilsy) € Cplsy).
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Since, by properties (a) and (b}, s? is an ECT and EST sequence of the modified set N, it follows
that, at the first position /(1 < / € k) in which Cy(s?) = C;(s,), it must be true Cpls)) <
Ciy(s,) and _/8] q 5.

Hence, replacing j{; with jif}; will not result in an increase of Cy;y(s;), [ < ' € k.

If this replacement causes jobs in s; following the new j{; to lose the EST sequencing property. it
3 is possible to reorder the set by EST without increasing Cy(s,), since C(;)(s,) has been reduced. In
e this manner s, is redefined to represent the new sequence. Repeating this procedure for all
I'(1 £ I'< kY, comparing C(s?) and Cy1(s,) and making necessary changes, as shown above, will
produce a sequence identical to the partial sequence of the first k jobs in s, without increasing
Cir) (D). Thus, Cpy(s) < Clls;) € Cua(s?. 1 < k < n, so proving the first statement. To com-

plete the proof, remember that, by definition,

CW(S,,O) = 2 W(k]C[k](S,,O)
k=1
and

CW(S,",) = 2 W[k]C[kl(S,‘,J).
k=1

It is well known that such a sum of pairwise products of two sequences of numbers will be minim-
ized if one sequence is arranged in increasing order and the other in decreasing order. Since the com-
pletion times Cy,) are already in increasing order, the minimization of C* is accomplished if sequencing
is such that the weights w are in decreasing (or at least nonincreasing) order. Therefore, being 50
and 57 sequences defined on the same set N, from assumption (¢) and previous results obtained, it fol-
lows that

C(s9) < C*(s2)

which proves the theorem.
Proof of Corollary 3.

If follows immediately from the previous theorem.

e el i -
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A NOTE ON
SPLITTING THE BUMP IN AN
ELIMINATION FACTORIZATION*

R. V. Helgason and J. L. Kennington

Department of Operations Research
and Engineering Management
Southern Methodist University

Dallas, Texas

ABSTRACT

This exposition presents a method for incorporating a technique known as
“splitting the bump" within an elimination form reinversion algorithm. This
procedure is designed to reduce fill-in during reinversion and should improve
the efficiency of linear programming systems which already use the superior el-
imination form of the inverse.

1. INTRODUCTION

Current production linear programming systems are designed to handle problems with 8000 to
16,000 rows and 1000 row problems are considered to be medium sized (see [10, 17]). Fortunately,
real problems tend to be sparse (the density of the constraint matrix is often less than 1% —see [1. 2, 9.
14, 15]1). Hence, a basis for a 1000 row problem may have only (1000) (1000) (1%) = 10,000 nonzero
entries. However, the inverse (which is required for the revised simplex algorithm) may be quite
dense having almost a million nonzero elements. Consequently, one of the most important design con-
siderations for a computer implementation of the revised simplex algorithm for general linear programs
is the technique used to maintain and update the basis inverse.

In order to minimize the storage required to implement this algorithm, production linear program-
ming systems maintain the inverse of the basis in either product or elimination form (see 1, 3,8, 11.
12, 17]). Computationally, the inverse is stored as a sequence of vectors known as eta vectors. and the
complete list of the eta’s is called the ETA File. Each basis change (pivot) results in appending at least
one eta vector to the ETA File. Since both the time per pivot and numerical error increase as the
length of the ETA File increases, it is necessary to periodically obtain a new factorization of the basis
inverse. This process of obtaining a new factorization is called reinversion. The objective of a reinver-
sion algorithm is to obtain a factored inverse (i.e., ETA File) in which the sparsity characteristics of the

original basis are preserved as much as possible.

The simplest reinversion technique for a given m-column basis can be thought of as successively
reducing the basis to an identity matrix via m pivct operations. The matrices which accomplish this
reduction constitute the ETA File. Out of this simple approach, reinversion techniques have evolved
which attempt to obtain a sparse factorization by selection of pivot positions, involving a reordering of
the columns of the basis and a conceptual reordering of the rows. In addition, a technique known as
splitting the bump, (8, 13], has been found beneficial when used within a product form reinversion

*This research was supported in part by the Air Force Office of Scientific Research under Grant N.umber AFOSR 77-3151.
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algorithm. Recently, however, computational evidence indicates that the elimination form factorization
is superior to the product form (with respect to both storage requirements and speed (see (2]). The
objective of this exposition is to present a reinversion algorithm in which one may achieve some of the
benefits of the "splitting the bump technique" when using the elimination form of the inverse.

For this note, the ith column of the m X m matrix B is denoted by B(i). The symbol e’ denotes
the m-component column vector having ith component one, and all other components zero. The sym-
bol n denotes an m-component column vector and 7, denotes the ith component of this vector.

2. FACTORIZATION ALGORITHMS

Let B be any m by m nonsingular matrix. In this section we present two algorithms for obtaining
a factorization of B~!. The first algorithm produces a product form factorization which corresponds to
the method for solving a system of linear equations known as Gauss-Jordan reduction while the second
algorithm produces an elimination form factorization which corresponds to a Gauss reduction (see [4]).

By row and column interchanges, B may be placed in the following form, where B' and B’ are
lower triangular matrices with nonzeroes on their diagonals:

| |
1) B* | B |
B lBS | B3

We assume that if B? is nonvacuous, every row and column has at least two nonzero entries, so that no
rearrangement of B2 can expand the size of B! or B3. B? is called the bump, merit, or heart section.
We further require the heart section to assume the following form where G*’s are either vacuous or
lower triangular with nonzeroes on the diagonal

The only partitions in B having columns with nonzeroes above the diagonal are the FX's which are
called external bumps. The columns extending above the diagonal are called spikes or spike columns.
An external bump is characterized as follows:
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(i) the last column of an external bump will be a spike with a nonzero lying in the topmost
row of the external bump, and

(ii) the nonspike columns have nonzero diagonal elements.

The algorithms of Hellerman and Rarick {6, 7] produce such a structure for any nonsingular matrix B,
and we shall call a matrix having this structure an HR matrix.

The product form factorization algorithm for an HR matrix is given as follows:

ALGORITHM 1: PRODUCT FORM FACTORIZATION FOR A HR MATRIX
0. Initialization

Seti+~— 1and 8 — B(1).
1. Obtain New Eta
1/8,, fork =i
L

Set —B,/8;, otherwise,

n, fork =i

(k) —
and set £'(k) {e". otherwise.

(Note: only » and i need be saved in the ETA File rather than the matrix E)
2. Test For Termination

If i = m, terminate, otherwise, i — i + 1.
3. Test For Spike

If B(i) is not a spike, set 8 — B (i) and go to 1.
4. Spike Update

Let B(k) correspond to the first column of the external bump containing B(/). Set
B— E~'... EBi).

S. Swap Spikes If Pivot Element Equals Zero

If B, # 0, go to 1; otherwise, there is some spike B(j) in the same external bump having
j > isuch that the ith component of £/~ ... E¥B(j) is nonzero. Set8 — E'~' ... E*B(j),
interchange B(;) and B () and go to 1.

In practice, the test for a zero pivot element in Step 5 is usually replaced by a tolerance test. Let
TOL denote the tolerance to be used in the test. If |8;] € TOL, then 8, is treated as if it is zero. Dis-
cussions of tolerances may be found in [12, 15, 16]. Similar tolerance tests would ordinarily be incor-
porated in the other algorithms to be presented in this exposition. To simplify the presentation they
have been omitted here.

Justification for Algorithm 1 is given in [S]. At termination, B~'= E™E™"! __ E'. Further-
more, we see that for nonspike columns, each 8 and consequently each » has exactly the same number
of nonzeroes as the corresponding column of B. However, the n for a spike column may have a higher
density than the original column of B. The phenomena of an n having a higher density than the
corresponding column of B is known as fill-in.
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It is well known that fill-in may be reduced by applying an elimination form factorization rather
than the product form (see [1]). The elimination form algorithm for an HR matrix is given as follows:

ALGORITHM 2: ELIMINATION FORM FACTORIZATION FOR A HR MATRIX
0. Initialization
Seti— 1, r—0,and 8 — B(1).

1. Obtain New Lower Eta

1/8;, for k =i
Set N — \ —B«/Bi, fork > i
0, otherwise,

gk

n, fork =i

» an Li(k) — .
E. d set L'(k) e, otherwise.

(Note: only n and / need be saved in the ETA File for the lower factors)
2. Test for Termination
‘,: If i = m, terminate; otherwise, i — i + 1.
3. Test for Spike
If B(i) is not a spike, set 8 — B (i) and go to 1.
4. Spike Update

Let B(k) correspond to the first column of the external bump containing B(j). Set
B8+— L1, L*B().

5. Swap Spikes if Pivot Element Equals Zero
If B, # 0, go to 6; otherwise, there is some spike B (/) in the same external bump having
| J > isuch that the ith component of L'™! ... L¥B(j) is nonzero. Set8— L'~!... LKB(})
and interchange B ({) and B (j).
6. Obtain New Upper Eta

Setr—r+1

1, fork =i
Set Nk - _Bk' fork < i

0, otherwise,

n fork =i

set Urtk) — e*, otherwise,

and go to 1.
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(Note: only m and i need be saved in the ETA File for the upper factors). At the termination of
Algorithm 2, B~'= U, ... U'L™ ... L', where the upper eta’s are upper trianguiar and the lower eta’s
are lower triangular. As with Algorithm 1 fill-in has been restricted to the eta’s corresponding to spike
columns.

3. SPLITTING THE BUMP
In an attempt to reduce the fill-in which occurs in spike columns during a reinversion using Algo-
rithm 1, a variation of the elimination form factorization algorithm (attributed to Martin Beale, see

{13]) has been used by some practitioners. This technique has been called "splitting the bump" after its
treatment of external bump columns.

Consider a set of columas of the basis corresponding to an external bump, say

where F is an external bump. Suppose F contains g spikes. If we apply the standard product form algo-
rithm, we obtain a set of eta’s such that

The eta’s corresponding to the g spikes may incur fill-in. If we split the bump, the fill-in can be res-
tricted to the n rows corresponding to F, hence, we may avoid fill-in in the last p rows. Since p may be
much larger than n, the savings could be substantial. The price which must be paid to attain this reduc-
tion in fill-in is that each external bump will require 2n + ¢ eta’s rather than n. The savings in fill-in is
typically so great that it offsets the additional storage which must be given up for the additional eta’s.

The product form algorithm incorporating the "splitting the bump” technique is given as foilows:

ALGORITHM 3: PRODUCT FORM FACTORIZATION FOR A HR MATRIX
INCLUDING SPLITTING THE BUMP

0. Initialization
Seti— 1, j—1,and 8 — B(1). If B(1) is in an external bump, go to 4.

I. Obtain New Lower Eta
1/8;, fork =i
Ne

Set =B.:/Bi. otherwise,

n, for k =i

J —
and set E/(k) [ e*, otherwise.

Set j — j + 1.
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2. Test for Termination
If i = m, terminate; otherwise, i — i + 1 and 8 — B{i).
3. Test for External Bump
If B (i) is not the first column in an external bump, go to 1.
4. Initialization for Bump

I — j (current length of Eta File)

s ~ i (first column in this external bump)

b — number of columns in this external bump

t ~ i+ b~ 1 (last column in this external bump)

Se?

5. Obtain Lower Eta

1/8;, fork =i
Set m, ——B«/B, fori <k <1
0, otherwise,

n, fork =1

j A
and set El/(k) ek otherwise.

Setj— j+ 1.
6. Test for End of Bump
If i = t, go to 10; otherwise, i — i + .
7. Test for Spike
If B(i) is not a spike, set 8 — B (i) and go to 5.
8. Spike Update
Setg — £/7V ... E'B(i).
9. Swap Spikes if Pivot Element Equals Zero
If 8, # 0, go to 5; otherwise, there is some spike B(r) in the same external bump having
r > isuch that the ith component of E/~! ... E'B(r) is nonzero. SetB — E/~' ... E'B(r),

interchange B (r) and B(i) and go to §.

10. Obtain Upper Eta

1, fork =i
Set ny— 1B fork <
0, otherwise,

n, fork =i

)/ —
and set £/(k) e, otherwise.

Setj—+landi— i~ 1
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11. Test for Beginning of Bump
4 If i =5, setB— B(i) and go to 13.
12. Test for Spike

If B(i) is not a spike, set i — i — 1 and go to 11; otherwise, set 8 — £/~ ... E'B (i) and
go to 10.

= 13. Obtain Lower Eta

I, fork =i
Set 17— {8, fork >t
0, otherwise,

m fork =i

(k) —
and set E/(k) e*, otherwise.

Setj—j+1.

- 14. Test for End of Bump
If i = ¢, go to 2; otherwise i — i + 1, set 8 — B (i), and go to 13.

At the termination of Algorithm 3, B~! = E/~' .. E'. Furthermore, all eta’s are either upper triangu-
lar or lower triangular, but they are intermixed.

Recall that Algorithm 2 produces a set of lower triangular factors followed by a set of upper tri-
angular factors. If one incorporates the "splitting the bump" technique into Algorithm 2 and applies it
to an HR matrix, the lower and upper factors become intermingled. Once the factors have become
intermingled, we may no longer use the important algorithm of Forrest and Tomlin [2] to maintain the
elimination form. We now show how one may achieve a partial "splitting of the bump" while simul-
taneously maintaining a partitioning of the upper and lower factors.

Recall that an HR matrix takes the form given in (1).

By a rearrangement of rows and columns, the HR matrix (1) may be placed in the following form:

‘ §3 §6 §5
D !
B4 B2
u v w
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where B® and B> are row permutations of B® and BS._respectively, and B® is a row and column permu-
tation of B'. Applying a variation of Algorithm 2 to B eliminates all fill-in in B’ while representing B!
as a product of upper factors followed by a product of lower factors. The details are given in the fol-
lowing algorithm.

ALGORITHM 4: ELIMINATION FORM FACTORIZATION FOR A MODIFIED HR MATRIX
0. Initialization
Seti—u+landB8— B(i). If v=0, go to 3.

1. Obtain New Lower Eta

1/8;, fork = i
Set 7, — 1 —B«/B, fork > i
0, otherwise,

n, fork=i
andset L'(k)—) .
e”, otherwise.

2. Test for End of Section 2
Seli~—i+land[3‘*—§(i). Ifi<u+v,gotol. If w=20,g0t08.

3. Obtain New Lower Eta

1/B,, for k =i
Set 7, — §-B«/Bi fork > i
0, otherwise,

m, fork=i

k  otherwise.

and set Li(k) — [
ek,

4. Test for End of Section 3
If i = m, go to 8; otherwise, i — i + 1.
5. Test for Spike
If B (i) is not a spike, set 8 — B (i) and go to 3.
6. Spike Update
SetB — Li-' ... L“**1 B(;).
7. Swap Spikes if Pivot Element Equals Zero
If B, = 0, go to 3; otherwise, there is some spike B (j) in the same external bump having

j > i such that the ith component of L~'...L“***'B(j) is nonzero. Set
B— L' ... L¥**1 B(j), interchange B (i) and B (j) and go to 3.
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8. Obtain New Upper Eta

1, fork =i
Set Ny —Bi» fork < i
0, otherwise,

n fork=1i

and set U'(k) — ek, otherwise.

9. Check for End of Section 2

. Seti+— i— 1. If i =0, terminate.
If i = u, set @ — B(i) and go to 12.

10. Set Column

Ifi>u+rsetf— L ... L B(); otherwise,
set@ — B(i). Goto8.

11. Obtain New Upper Eta

1/B,‘, fork =i
Set my — | —Bi/Bi fork <
0, otherwise,

. v, fork =1
and set  U'(k) — e, otherwise.

12. Check for Termination

If i = 1, terminate; otherwise 8 — B (i) and go to 11.

At the termination of Algorithm 4, B™'= U' ... U™L” ... L**!, and the fill-in has been restricted to
B?. Hence, Algorithm 4 gains some of the benefits of the "splitting the bump” technique while main-
taining a partitioning of the upper and lower factors. The benefits are not as great as with ordinary
"bump splitting” since each individual external bump is split, whereas here the split is with respect to
the entire heart section.

A variation of Algorithm 4 has also been used by Tomlin [{15]. Our contribution is that we have
tied together the ideas of "splitting the bump" in both the product and elimination form factorizations
and we have explicitly indicated via Algorithms 3 and 4 how these may be implemented.
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A NOTE ON SOLVING MULTIFACILITY LOCATION
PROBLEMS INVOLVING EUCLIDEAN DISTANCES

Henrik Juel

Soenderborg School of Economics and Business Administration
Soenderborg, Denmark

ABSTRACT

This note considers a recently proposed solution method for a multifacility
location problem. [t is shown that the method does not always produce an op-

timal solution.

In a recent issue of this journai Calamai and Charalambous {1] conclude that many existing
methods designed for solving the multifacility location problem are either poorly structured, subop-
timal, or haphazard (p. 619). It should be pointed out that their proposed algorithm belongs to the
same class of methods, in the sense that the algorithm sometimes gives a suboptimal solution.

The authors base their algorithm on a set of necessary conditions and seem to believe that this set
of conditions is also sufficient for optimality, although sufficiency has yet to be proven (p. 617). In a
problem involving rectilinear distances the necessary conditions are also sufficient [3]. This resuit holds
for Euclidean distances, too, as long as each case of facility coincidence involves just two facilities {2].
But if a current solution to a problem involving Euclidean distances has three or more facilities located
at the same point, the author’s set of necessary conditions are not in general sufficient for optimality, as

shown by the following example.

Consider a current solution where new facilities 1, 2, and 3 occupy the same location and no other
facility occupies this location. Let the given weights relating to these new facilities be vy; = 1, vi3 = 1,
and v2; = 52 — 1. Suppose the other weights and facility locations are such that the pseudo-gradients
in (4.2¢) (p. 613) are G, = (2, 0), G, = (0, 1), and G; = (-2, —1). Now consider the necessary con-
ditions for optimality in (5.3) (p. 613). When § contains one element, the left hand sides of the condi-
tion are 2, 1, and 5Y2, whereas the right hand sides are 2, 52, and 5¥2. Hence, moving one of the
new facilities 1, 2, or 3, as done in step (3) (p. 615) of the authors’ algorithm, does not yield a better
solution. Moving the entire cluster of these new facilities is likewise unsuccessful, since the sum of the
pseudo-gradients is (0, 0). Finally, when S contains two elements, the conditions for S containing one
element are repeated so moving a subset cluster, as done in step (5) of the algorithm, would not yield a

better solution,

Summarizing, the example represents a situation where the algorithm will stop, because the
necessary conditions for optimality are satisfied. But the current solution is suboptimal, because the
directional derivative is not nonnegative for all directions. To verify this consider, for instance, a direc-
tion vector D where the only nonvanishing two-dimensional component vectors are D; ~ (—4, —1) and
D = (=2, ~1). (D can be normalized into a unit vector by using the factor 22V2  if desired.) The
directional derivative at the current solution in this direction is given by (4.1) (p. 612), which yields:
—~8—14+0+2+417Y2+ (5~ 5Y2), which is negative. Thus, a better solution can be achieved by keeping
new facility 3 fixed, and by moving new facilities 1 and 2, not as a subcluster, but along the separate

directions indicated above.
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The possibility that facilities may coincide renders the objective function in the multifacility loca-
tion problem nondifferentiable, and, thus, difficult to handle computationally. Until a satisfactory
nondifferentiable optimization technique has been developed, decision makers should continue to use a
differentiable approximation to their problem (unless the distances are rectilinear). The new algorithm
is of dubious value to a decision maker interested in an optimal solution to the problem.

Finally, it might be pointed out that problem 6 (p. 618) can be solved by inspection using corol-
lary 2 and corollary 1 in [4]. The results in this reference offer the potential for reduction of practical
problems by exploiting the special weight structure.
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